Spaces:
Runtime error
Runtime error
File size: 3,692 Bytes
b8c24aa 3a82207 63b82b4 c8fdb3b 3a82207 4e81072 7dc3087 08c1bd3 4e81072 7dc3087 8ea3940 7dc3087 63b82b4 9e5e37f 63b82b4 9e5e37f ea9c0d3 7115ad7 ea9c0d3 7dc3087 64d8a64 63b82b4 64d8a64 63b82b4 64d8a64 63b82b4 fccbbf3 63b82b4 08c1bd3 5e407f5 ea9c0d3 741f665 7dc3087 3a82207 741f665 3a82207 63b82b4 3a82207 63b82b4 3a82207 63b82b4 3c2563a 533ccb0 ea9c0d3 3a82207 ea9c0d3 3a82207 7dc3087 3a82207 7dc3087 3a82207 7dc3087 3a82207 63b82b4 e9cb74c 3a82207 63b82b4 3c2563a e2534da 63b82b4 3c2563a 63b82b4 6cad6fb 63b82b4 ea9c0d3 63b82b4 9a34670 63b82b4 d0dec2c 3a82207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
import os
from threading import Thread
import spaces
import time
token = os.environ["HF_TOKEN"]
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
"KissanAI/llama3-8b-dhenu-0.1-sft-16bit", quantization_config=quantization_config, token=token
)
tok = AutoTokenizer.from_pretrained("KissanAI/llama3-8b-dhenu-0.1-sft-16bit", token=token)
terminators = [
tok.eos_token_id,
tok.convert_tokens_to_ids("<|eot_id|>")
]
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
device = torch.device("cpu")
print("Using CPU")
# model = model.to(device)
# Dispatch Errors
@spaces.GPU()
def chat(message, history, temperature,do_sample, max_tokens):
prompt_template = """
You are a helpful Agricultural assistant for farmers. You are given the following input. Please complete the response briefly.
## Question:
{}
## Response:
{}"""
start_time = time.time()
chat = []
# for item in history:
# chat.append({"role": "user", "content": item[0]})
# if item[1] is not None:
# chat.append({"role": "assistant", "content": item[1]})
# chat.append({"role": "user", "content": message})
# messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
model_inputs = tok(prompt_template.format(
message, #input
"" # response
), return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
repetition_penalty=1.2,
use_cache=False,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
first_token_time = None
for new_text in streamer:
if not first_token_time:
first_token_time = time.time() - start_time
partial_text += new_text
yield partial_text
total_time = time.time() - start_time
tokens = len(tok.tokenize(partial_text))
tokens_per_second = tokens / total_time if total_time > 0 else 0
timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
yield partial_text + timing_info
demo = gr.ChatInterface(
fn=chat,
examples=[["I'm a farmer from Odisha, how do I take care of whitefly in my cotton crop?"]],
# multimodal=False,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature", render=False
),
gr.Checkbox(label="Sampling",value=False),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
stop_btn="Stop Generation",
title="Chat With LLMs",
description="Now Running [KissanAI/llama3-8b-dhenu-0.1-sft-16bit](https://huggingface.co/KissanAI/llama3-8b-dhenu-0.1-sft-16bit) in 4bit")
demo.launch()
|