|
"""Object detection demo with MobileNet SSD. |
|
This model and code are based on |
|
https://github.com/robmarkcole/object-detection-app |
|
""" |
|
|
|
import logging |
|
import queue |
|
from pathlib import Path |
|
from typing import List, NamedTuple |
|
|
|
import av |
|
import cv2 |
|
import numpy as np |
|
import streamlit as st |
|
from streamlit_webrtc import WebRtcMode, webrtc_streamer |
|
|
|
from utils.download import download_file |
|
from utils.turn import get_ice_servers |
|
|
|
HERE = Path(__file__).parent |
|
ROOT = HERE.parent |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" |
|
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel" |
|
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" |
|
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt" |
|
|
|
CLASSES = [ |
|
"background", |
|
"aeroplane", |
|
"bicycle", |
|
"bird", |
|
"boat", |
|
"bottle", |
|
"bus", |
|
"car", |
|
"cat", |
|
"chair", |
|
"cow", |
|
"diningtable", |
|
"dog", |
|
"horse", |
|
"motorbike", |
|
"person", |
|
"pottedplant", |
|
"sheep", |
|
"sofa", |
|
"train", |
|
"tvmonitor", |
|
] |
|
|
|
|
|
class Detection(NamedTuple): |
|
class_id: int |
|
label: str |
|
score: float |
|
box: np.ndarray |
|
|
|
|
|
@st.cache_resource |
|
def generate_label_colors(): |
|
return np.random.uniform(0, 255, size=(len(CLASSES), 3)) |
|
|
|
|
|
COLORS = generate_label_colors() |
|
|
|
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564) |
|
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353) |
|
|
|
|
|
|
|
cache_key = "object_detection_dnn" |
|
if cache_key in st.session_state: |
|
net = st.session_state[cache_key] |
|
else: |
|
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)) |
|
st.session_state[cache_key] = net |
|
|
|
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05) |
|
|
|
|
|
|
|
|
|
|
|
result_queue: "queue.Queue[List[Detection]]" = queue.Queue() |
|
|
|
|
|
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame: |
|
image = frame.to_ndarray(format="bgr24") |
|
|
|
|
|
blob = cv2.dnn.blobFromImage( |
|
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5 |
|
) |
|
net.setInput(blob) |
|
output = net.forward() |
|
|
|
h, w = image.shape[:2] |
|
|
|
|
|
output = output.squeeze() |
|
output = output[output[:, 2] >= score_threshold] |
|
detections = [ |
|
Detection( |
|
class_id=int(detection[1]), |
|
label=CLASSES[int(detection[1])], |
|
score=float(detection[2]), |
|
box=(detection[3:7] * np.array([w, h, w, h])), |
|
) |
|
for detection in output |
|
] |
|
|
|
|
|
for detection in detections: |
|
caption = f"{detection.label}: {round(detection.score * 100, 2)}%" |
|
color = COLORS[detection.class_id] |
|
xmin, ymin, xmax, ymax = detection.box.astype("int") |
|
|
|
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2) |
|
cv2.putText( |
|
image, |
|
caption, |
|
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.5, |
|
color, |
|
2, |
|
) |
|
|
|
result_queue.put(detections) |
|
|
|
return av.VideoFrame.from_ndarray(image, format="bgr24") |
|
|
|
|
|
webrtc_ctx = webrtc_streamer( |
|
key="object-detection", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration={"iceServers": get_ice_servers()}, |
|
video_frame_callback=video_frame_callback, |
|
media_stream_constraints={"video": True, "audio": False}, |
|
async_processing=True, |
|
) |
|
|
|
if st.checkbox("Show the detected labels", value=True): |
|
if webrtc_ctx.state.playing: |
|
labels_placeholder = st.empty() |
|
|
|
|
|
|
|
|
|
|
|
while True: |
|
result = result_queue.get() |
|
labels_placeholder.table(result) |
|
|
|
st.markdown( |
|
"This demo uses a model and code from " |
|
"https://github.com/robmarkcole/object-detection-app. " |
|
"Many thanks to the project." |
|
) |
|
|