|
import threading |
|
|
|
import streamlit as st |
|
import cv2 |
|
import numpy as np |
|
from transformers import pipeline |
|
from PIL import Image, ImageDraw |
|
from mtcnn import MTCNN |
|
from streamlit_webrtc import webrtc_streamer |
|
import logging |
|
|
|
|
|
logging.getLogger("transformers").setLevel(logging.ERROR) |
|
|
|
lock = threading.Lock() |
|
img_container = {"webcam": None, |
|
"analyzed": None} |
|
|
|
|
|
emotion_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression") |
|
|
|
|
|
mtcnn = MTCNN() |
|
|
|
|
|
def analyze_sentiment(face): |
|
|
|
rgb_face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) |
|
|
|
pil_image = Image.fromarray(rgb_face) |
|
|
|
results = emotion_pipeline(pil_image) |
|
|
|
dominant_emotion = max(results, key=lambda x: x['score'])['label'] |
|
return dominant_emotion |
|
|
|
TEXT_SIZE = 3 |
|
|
|
|
|
def detect_and_draw_faces(frame): |
|
|
|
results = mtcnn.detect_faces(frame) |
|
|
|
|
|
for result in results: |
|
x, y, w, h = result['box'] |
|
face = frame[y:y+h, x:x+w] |
|
sentiment = analyze_sentiment(face) |
|
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 10) |
|
|
|
|
|
text_size = cv2.getTextSize(sentiment, cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, 2)[0] |
|
text_x = x |
|
text_y = y - 10 |
|
background_tl = (text_x, text_y - text_size[1]) |
|
background_br = (text_x + text_size[0], text_y + 5) |
|
|
|
|
|
cv2.rectangle(frame, background_tl, background_br, (0, 0, 0), cv2.FILLED) |
|
|
|
cv2.putText(frame, sentiment, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, (255, 255, 255), 2) |
|
|
|
return frame |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.main { |
|
background-color: #FFFFFF; |
|
} |
|
.reportview-container .main .block-container{ |
|
padding-top: 2rem; |
|
} |
|
h1 { |
|
color: #E60012; |
|
font-family: 'Arial Black', Gadget, sans-serif; |
|
} |
|
h2 { |
|
color: #E60012; |
|
font-family: 'Arial', sans-serif; |
|
} |
|
h3 { |
|
color: #333333; |
|
font-family: 'Arial', sans-serif; |
|
} |
|
.stButton button { |
|
background-color: #E60012; |
|
color: white; |
|
border-radius: 5px; |
|
font-size: 16px; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
st.title("Computer Vision Test Lab") |
|
st.subheader("Facial Sentiment") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.header("Input Stream") |
|
st.subheader("Webcam") |
|
video_placeholder = st.empty() |
|
|
|
with col2: |
|
st.header("Output Stream") |
|
st.subheader("Analysis") |
|
output_placeholder = st.empty() |
|
|
|
sentiment_placeholder = st.empty() |
|
|
|
def video_frame_callback(frame): |
|
try: |
|
with lock: |
|
img = frame.to_ndarray(format="bgr24") |
|
img_container["webcam"] = img |
|
frame_with_boxes = detect_and_draw_faces(img) |
|
img_container["analyzed"] = frame_with_boxes |
|
|
|
except Exception as e: |
|
st.error(f"Error processing frame: {e}") |
|
|
|
return frame |
|
|
|
ctx = webrtc_streamer(key="webcam", video_frame_callback=video_frame_callback) |
|
|
|
while ctx.state.playing: |
|
with lock: |
|
print(img_container) |
|
img = img_container["webcam"] |
|
frame_with_boxes = img_container["analyzed"] |
|
|
|
if img is None: |
|
continue |
|
|
|
video_placeholder.image(img, channels="BGR") |
|
output_placeholder.image(frame_with_boxes, channels="BGR") |
|
|