File size: 24,185 Bytes
a113cef
 
 
 
a8af1a7
 
 
 
47a7ca5
a113cef
 
 
 
a8af1a7
a113cef
 
47a7ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a113cef
a8af1a7
 
 
 
 
 
 
 
 
 
 
fcd3e1e
47a7ca5
a8af1a7
a113cef
fcd3e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a7ca5
 
 
fcd3e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a7ca5
 
 
 
 
 
 
fcd3e1e
47a7ca5
 
 
 
fcd3e1e
 
 
 
 
 
 
 
 
 
 
47a7ca5
 
 
 
fcd3e1e
 
 
 
47a7ca5
fcd3e1e
 
 
 
 
47a7ca5
 
 
fcd3e1e
47a7ca5
 
fcd3e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a7ca5
 
 
 
 
 
 
 
 
fcd3e1e
 
 
 
47a7ca5
fcd3e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a7ca5
fcd3e1e
47a7ca5
fcd3e1e
 
 
 
 
 
 
47a7ca5
fcd3e1e
 
 
 
 
 
 
 
 
 
 
47a7ca5
fcd3e1e
 
 
 
a113cef
a8af1a7
 
 
 
a113cef
f318f5f
 
 
a8af1a7
 
 
 
a113cef
 
a8af1a7
 
 
 
 
 
 
a113cef
a8af1a7
 
a113cef
a8af1a7
a113cef
a8af1a7
 
 
fcd3e1e
 
a113cef
fcd3e1e
 
 
 
 
a8af1a7
fcd3e1e
 
 
 
 
 
a8af1a7
 
fcd3e1e
a8af1a7
 
 
 
 
 
 
a113cef
a8af1a7
 
a113cef
a8af1a7
 
 
 
 
 
 
 
 
a113cef
a8af1a7
a113cef
 
 
a8af1a7
 
a113cef
a8af1a7
a113cef
a8af1a7
 
a113cef
 
fcd3e1e
 
 
 
 
a113cef
a8af1a7
 
 
 
a113cef
e7f0792
 
 
 
 
 
 
 
 
 
 
 
fcd3e1e
 
e7f0792
fcd3e1e
e7f0792
 
fcd3e1e
e7f0792
 
fcd3e1e
 
e7f0792
 
 
 
 
 
 
 
 
a113cef
fcd3e1e
 
 
a113cef
fcd3e1e
 
 
 
a113cef
fcd3e1e
 
 
 
47a7ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcd3e1e
a113cef
47a7ca5
 
 
a113cef
 
 
 
 
fcd3e1e
a113cef
 
fcd3e1e
 
 
 
 
 
 
47a7ca5
fcd3e1e
47a7ca5
fcd3e1e
a113cef
a8af1a7
 
a113cef
a8af1a7
 
 
 
47a7ca5
a8af1a7
 
 
a113cef
 
 
fcd3e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a113cef
a8af1a7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
import gradio as gr
import pandas as pd
import plotly.express as px
from dataclasses import dataclass, field
from typing import List, Dict, Tuple, Union
import json
import os
from collections import OrderedDict
import re

@dataclass
class ScorecardCategory:
    name: str
    questions: List[Dict[str, Union[str, List[str]]]]
    scores: Dict[str, int] = field(default_factory=dict)


def extract_category_number(category_name: str) -> int:
    """Extract the category number from the category name."""
    match = re.match(r'^(\d+)\.?\s*.*$', category_name)
    return int(match.group(1)) if match else float('inf')

def sort_categories(categories):
    """Sort categories by their numeric prefix."""
    return sorted(categories, key=extract_category_number)


# def load_scorecard_templates(directory):
#     templates = []
#     for filename in os.listdir(directory):
#         if filename.endswith('.json'):
#             with open(os.path.join(directory, filename), 'r') as file:
#                 data = json.load(file)
#                 templates.append(ScorecardCategory(
#                     name=data['name'],
#                     questions=data['questions']
#                 ))
#     return templates

def get_modality_icon(modality):
    """Return an emoji icon for each modality type."""
    icons = {
        "Text-to-Text": "πŸ“",  # Memo icon for text-to-text
        "Text-to-Image": "🎨",  # Artist palette for text-to-image
        "Image-to-Text": "πŸ”",  # Magnifying glass for image-to-text
        "Image-to-Image": "πŸ–ΌοΈ",  # Frame for image-to-image
        "Audio": "🎡",  # Musical note for audio
        "Video": "🎬",  # Clapper board for video
        "Multimodal": "πŸ”„"  # Cycle arrows for multimodal
    }
    return icons.get(modality, "πŸ’«")  # Default icon if modality not found

def create_metadata_card(metadata):
    """Create a formatted HTML card for metadata."""
    html = "<div class='card metadata-card'>"
    html += "<div class='card-title'>Model Information</div>"
    html += "<div class='metadata-content'>"
    
    # Handle special formatting for modalities
    modalities = metadata.get("Modalities", [])
    formatted_modalities = ""
    if modalities:
        formatted_modalities = " ".join(
            f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>"
            for m in modalities
        )
    
    # Order of metadata display (customize as needed)
    display_order = ["Name", "Provider", "Type", "URL"]
    
    # Display ordered metadata first
    for key in display_order:
        if key in metadata:
            value = metadata[key]
            if key == "URL":
                html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> "
                html += f"<a href='{value}' target='_blank' class='metadata-link'>{value}</a></div>"
            else:
                html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>"
    
    # Add modalities if present
    if formatted_modalities:
        html += f"<div class='metadata-row'><span class='metadata-label'>Modalities:</span> <div class='modality-container'>{formatted_modalities}</div></div>"
    
    # Add any remaining metadata not in display_order
    for key, value in metadata.items():
        if key not in display_order and key != "Modalities":
            html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>"
    
    html += "</div></div>"
    return html


def load_models_from_json(directory):
    models = {}
    for filename in os.listdir(directory):
        if filename.endswith('.json'):
            with open(os.path.join(directory, filename), 'r') as file:
                model_data = json.load(file)
                model_name = model_data['metadata']['Name']
                models[model_name] = model_data
    
    return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower()))

# Load templates and models
# scorecard_template = load_scorecard_templates('scorecard_templates')
models = load_models_from_json('model_data')

def create_source_html(sources):
    if not sources:
        return ""
    
    html = "<div class='sources-list'>"
    for source in sources:
        icon = source.get("type", "")
        detail = source.get("detail", "")
        name = source.get("name", detail)
        
        html += f"<div class='source-item'>{icon} "
        if detail.startswith("http"):
            html += f"<a href='{detail}' target='_blank'>{name}</a>"
        else:
            html += name
        html += "</div>"
    html += "</div>"
    return html

def create_leaderboard():
    scores = []
    for model, data in models.items():
        total_score = 0
        total_questions = 0
        
        for category in data['scores'].values():
            for section in category.values():
                if section['status'] != 'N/A':
                    questions = section.get('questions', {})
                    total_score += sum(1 for q in questions.values() if q)
                    total_questions += len(questions)
        
        score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0
        scores.append((model, score_percentage))
    
    df = pd.DataFrame(scores, columns=['Model', 'Score Percentage'])
    df = df.sort_values('Score Percentage', ascending=False).reset_index(drop=True)
    
    html = "<div class='card leaderboard-card'>"
    html += "<div class='card-title'>AI Model Social Impact Leaderboard</div>"
    html += "<table class='leaderboard-table'>"
    html += "<tr><th>Rank</th><th>Model</th><th>Score Percentage</th></tr>"
    for i, (_, row) in enumerate(df.iterrows(), 1):
        html += f"<tr><td>{i}</td><td>{row['Model']}</td><td>{row['Score Percentage']:.2f}%</td></tr>"
    html += "</table></div>"
    
    return html

def create_category_chart(selected_models, selected_categories):
    if not selected_models:
        return px.bar(title='Please select at least one model for comparison')
    
    # Sort categories before processing
    selected_categories = sort_categories(selected_categories)
    
    data = []
    for model in selected_models:
        for category in selected_categories:
            if category in models[model]['scores']:
                total_score = 0
                total_questions = 0
                
                for section in models[model]['scores'][category].values():
                    if section['status'] != 'N/A':
                        questions = section.get('questions', {})
                        total_score += sum(1 for q in questions.values() if q)
                        total_questions += len(questions)
                
                score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0
                data.append({
                    'Model': model,
                    'Category': category,
                    'Score Percentage': score_percentage
                })
    
    df = pd.DataFrame(data)
    if df.empty:
        return px.bar(title='No data available for the selected models and categories')
    
    fig = px.bar(df, x='Model', y='Score Percentage', color='Category',
                 title='AI Model Scores by Category',
                 labels={'Score Percentage': 'Score Percentage'},
                 category_orders={"Category": selected_categories})
    return fig

def update_detailed_scorecard(model, selected_categories):
    if not model:
        return [
            gr.update(value="Please select a model to view details.", visible=True),
            gr.update(visible=False),
            gr.update(visible=False)
        ]
    
    print("Selected categories:", selected_categories)
    print("Available categories in model:", list(models[model]['scores'].keys()))

    # Sort categories before processing
    selected_categories = sort_categories(selected_categories)
    metadata_html = create_metadata_card(models[model]['metadata'])


    # metadata_md = f"## Model Metadata for {model}\n\n"
    # for key, value in models[model]['metadata'].items():
    #     metadata_md += f"**{key}:** {value}\n\n"

    total_yes = 0
    total_no = 0
    total_na = 0

    all_cards_content = "<div class='container'>"
    for category_name in selected_categories:
        if category_name in models[model]['scores']:
            category_data = models[model]['scores'][category_name]
            card_content = f"<div class='card'><div class='card-title'>{category_name}</div>"
            
            # Sort sections within each category
            sorted_sections = sorted(category_data.items(), 
                                  key=lambda x: float(re.match(r'^(\d+\.?\d*)', x[0]).group(1)))
            
            category_yes = 0
            category_no = 0
            category_na = 0
            
            for section, details in sorted_sections:
                status = details['status']
                sources = details.get('sources', [])
                questions = details.get('questions', {})
                
                section_class = "section-na" if status == "N/A" else "section-active"
                status_class = status.lower()
                status_icon = "●" if status == "Yes" else "β—‹" if status == "N/A" else "Γ—"
                
                card_content += f"<div class='section {section_class}'>"
                card_content += f"<div class='section-header'><h3>{section}</h3>"
                card_content += f"<span class='status-badge {status_class}'>{status_icon} {status}</span></div>"
                
                if sources:
                    card_content += "<div class='sources-list'>"
                    for source in sources:
                        icon = source.get("type", "")
                        detail = source.get("detail", "")
                        name = source.get("name", detail)
                        
                        card_content += f"<div class='source-item'>{icon} "
                        if detail.startswith("http"):
                            card_content += f"<a href='{detail}' target='_blank'>{name}</a>"
                        else:
                            card_content += name
                        card_content += "</div>"
                    card_content += "</div>"
                
                if questions:
                    yes_count = sum(1 for v in questions.values() if v)
                    total_count = len(questions)
                    
                    card_content += "<details class='question-accordion'>"
                    if status == "N/A":
                        card_content += f"<summary>View {total_count} N/A items</summary>"
                    else:
                        card_content += f"<summary>View details ({yes_count}/{total_count} completed)</summary>"
                    
                    card_content += "<div class='questions'>"
                    for question, is_checked in questions.items():
                        if status == "N/A":
                            style_class = "na"
                            icon = "β—‹"
                            category_na += 1
                            total_na += 1
                        else:
                            if is_checked:
                                style_class = "checked"
                                icon = "βœ“"
                                category_yes += 1
                                total_yes += 1
                            else:
                                style_class = "unchecked"
                                icon = "βœ—"
                                category_no += 1
                                total_no += 1
                        
                        card_content += f"<div class='question-item {style_class}'>{icon} {question}</div>"
                    card_content += "</div></details>"
                
                card_content += "</div>"
            
            if category_yes + category_no > 0:
                category_score = category_yes / (category_yes + category_no) * 100
                card_content += f"<div class='category-score'>Category Score: {category_score:.2f}% (Yes: {category_yes}, No: {category_no}, N/A: {category_na})</div>"
            elif category_na > 0:
                card_content += f"<div class='category-score'>Category Score: N/A (All {category_na} items not applicable)</div>"
            
            card_content += "</div>"
            all_cards_content += card_content

    all_cards_content += "</div>"
    
    if total_yes + total_no > 0:
        total_score = total_yes / (total_yes + total_no) * 100
        total_score_md = f"<div class='total-score'>Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})</div>"
    else:
        total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>"
    
    return [
        gr.update(value=metadata_html, visible=True),
        gr.update(value=all_cards_content, visible=True),
        gr.update(value=total_score_md, visible=True)
    ]

css = """
.container {
    display: flex;
    flex-wrap: wrap;
    justify-content: space-between;
}
.container.svelte-1hfxrpf.svelte-1hfxrpf {
    height: 0%;
}
.card {
    width: calc(50% - 20px);
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #ffffff;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1);
    transition: all 0.3s ease;
}
.card:hover {
    box-shadow: 0 6px 8px rgba(0,0,0,0.15);
    transform: translateY(-5px);
}
.card-title {
    font-size: 1.4em;
    font-weight: bold;
    margin-bottom: 15px;
    color: #333;
    border-bottom: 2px solid #e0e0e0;
    padding-bottom: 10px;
}
.sources-list {
    margin: 10px 0;
}
.source-item {
    margin: 5px 0;
    padding: 5px;
    background-color: #f8f9fa;
    border-radius: 4px;
}
.question-item {
    margin: 5px 0;
    padding: 8px;
    border-radius: 4px;
}
.question-item.checked {
    background-color: #e6ffe6;
}
.question-item.unchecked {
    background-color: #ffe6e6;
}
.category-score, .total-score {
    background-color: #f0f8ff;
    border: 1px solid #b0d4ff;
    border-radius: 5px;
    padding: 10px;
    margin-top: 15px;
    font-weight: bold;
    text-align: center;
}
.total-score {
    font-size: 1.2em;
    background-color: #e6f3ff;
    border-color: #80bdff;
}
.leaderboard-card {
    width: 100%;
    max-width: 800px;
    margin: 0 auto;
}
.leaderboard-table {
    width: 100%;
    border-collapse: collapse;
}
.leaderboard-table th, .leaderboard-table td {
    padding: 10px;
    text-align: left;
    border-bottom: 1px solid #e0e0e0;
}
.leaderboard-table th {
    background-color: #f2f2f2;
    font-weight: bold;
}
.section {
    margin-bottom: 20px;
    padding: 15px;
    border-radius: 5px;
    background-color: #f8f9fa;
}
@media (max-width: 768px) {
    .card {
        width: 100%;
    }
}
.dark {
    background-color: #1a1a1a;
    color: #e0e0e0;

    .card {
        background-color: #2a2a2a;
        border-color: #444;
    }
    .card-title {
        color: #fff;
        border-bottom-color: #444;
    }
    .source-item {
        background-color: #2a2a2a;
    }
    .question-item.checked {
        background-color: #1a3a1a;
    }
    .question-item.unchecked {
        background-color: #3a1a1a;
    }
    .section {
        background-color: #2a2a2a;
    }
    .category-score, .total-score {
        background-color: #2c3e50;
        border-color: #34495e;
    }
    .leaderboard-table th {
        background-color: #2c3e50;
    }
}

.section-na {
    opacity: 0.6;
}

.question-item.na {
    background-color: #f0f0f0;
    color: #666;
}

.dark .question-item.na {
    background-color: #2d2d2d;
    color: #999;
}

.section-header {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin-bottom: 10px;
}

.status-badge {
    font-size: 0.9em;
    padding: 4px 8px;
    border-radius: 12px;
    font-weight: 500;
}

.status-badge.yes {
    background-color: #e6ffe6;
    color: #006600;
}

.status-badge.no {
    background-color: #ffe6e6;
    color: #990000;
}

.status-badge.n\/a {
    background-color: #f0f0f0;
    color: #666666;
}

.question-accordion {
    margin-top: 10px;
}

.question-accordion summary {
    cursor: pointer;
    padding: 8px;
    background-color: #f8f9fa;
    border-radius: 4px;
    margin-bottom: 10px;
    font-weight: 500;
}

.question-accordion summary:hover {
    background-color: #e9ecef;
}

.dark .status-badge.yes {
    background-color: #1a3a1a;
    color: #90EE90;
}

.dark .status-badge.no {
    background-color: #3a1a1a;
    color: #FFB6B6;
}

.dark .status-badge.n\/a {
    background-color: #2d2d2d;
    color: #999999;
}

.dark .question-accordion summary {
    background-color: #2a2a2a;
}

.dark .question-accordion summary:hover {
    background-color: #333333;
}
.metadata-card {
    margin-bottom: 30px;
    width: 100% !important;
}

.metadata-content {
    display: flex;
    flex-direction: column;
    gap: 12px;
}

.metadata-row {
    display: flex;
    align-items: flex-start;
    gap: 10px;
    line-height: 1.5;
}

.metadata-label {
    font-weight: 600;
    min-width: 100px;
    color: #555;
}

.metadata-value {
    color: #333;
}

.metadata-link {
    color: #007bff;
    text-decoration: none;
}

.metadata-link:hover {
    text-decoration: underline;
}

.modality-container {
    display: flex;
    flex-wrap: wrap;
    gap: 8px;
}

.modality-badge {
    display: inline-flex;
    align-items: center;
    gap: 4px;
    padding: 4px 10px;
    background-color: #f0f7ff;
    border: 1px solid #cce3ff;
    border-radius: 15px;
    font-size: 0.9em;
    color: #0066cc;
}

.dark .metadata-label {
    color: #aaa;
}

.dark .metadata-value {
    color: #ddd;
}

.dark .metadata-link {
    color: #66b3ff;
}

.dark .modality-badge {
    background-color: #1a2733;
    border-color: #2c3e50;
    color: #99ccff;
}
"""

first_model = next(iter(models.values()))
category_choices = list(first_model['scores'].keys())

with gr.Blocks(css=css) as demo:
    gr.Markdown("# AI Model Social Impact Scorecard Dashboard")
    
    with gr.Row():
        tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"], 
                                label="Select Tab", value="Leaderboard")
    
    with gr.Row():
        model_chooser = gr.Dropdown(choices=[""] + list(models.keys()),
                                  label="Select Model for Details", 
                                  value="",
                                  interactive=True, visible=False)
        model_multi_chooser = gr.Dropdown(choices=list(models.keys()),
                                        label="Select Models for Comparison", 
                                        multiselect=True, interactive=True, visible=False)
        category_filter = gr.CheckboxGroup(choices=category_choices,
                                         label="Filter Categories", 
                                         value=category_choices,
                                         visible=False)
    
    with gr.Column(visible=True) as leaderboard_tab:
        leaderboard_output = gr.HTML()
    
    with gr.Column(visible=False) as category_analysis_tab:
        category_chart = gr.Plot()
    
    with gr.Column(visible=False) as detailed_scorecard_tab:
        model_metadata = gr.HTML()
        all_category_cards = gr.HTML()
        total_score = gr.Markdown()

    # Initialize the dashboard with the leaderboard
    leaderboard_output.value = create_leaderboard()
    
    def update_dashboard(tab, selected_models, selected_model, selected_categories):
            leaderboard_visibility = gr.update(visible=False)
            category_chart_visibility = gr.update(visible=False)
            detailed_scorecard_visibility = gr.update(visible=False)
            model_chooser_visibility = gr.update(visible=False)
            model_multi_chooser_visibility = gr.update(visible=False)
            category_filter_visibility = gr.update(visible=False)

            if tab == "Leaderboard":
                leaderboard_visibility = gr.update(visible=True)
                leaderboard_html = create_leaderboard()
                return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
                        model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
                        gr.update(value=leaderboard_html), gr.update(), gr.update(), gr.update(), gr.update()]
            
            elif tab == "Category Analysis":
                category_chart_visibility = gr.update(visible=True)
                model_multi_chooser_visibility = gr.update(visible=True)
                category_filter_visibility = gr.update(visible=True)
                category_plot = create_category_chart(selected_models or [], selected_categories)
                return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
                        model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
                        gr.update(), gr.update(value=category_plot), gr.update(), gr.update(), gr.update()]
            
            elif tab == "Detailed Scorecard":
                detailed_scorecard_visibility = gr.update(visible=True)
                model_chooser_visibility = gr.update(visible=True)
                category_filter_visibility = gr.update(visible=True)
                if selected_model:
                    scorecard_updates = update_detailed_scorecard(selected_model, selected_categories)
                else:
                    scorecard_updates = [
                        gr.update(value="Please select a model to view details.", visible=True),
                        gr.update(visible=False),
                        gr.update(visible=False)
                    ]
                return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
                        model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
                        gr.update(), gr.update()] + scorecard_updates

    # Set up event handlers
    tab_selection.change(
        fn=update_dashboard,
        inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
        outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
                model_chooser, model_multi_chooser, category_filter,
                leaderboard_output, category_chart, model_metadata,
                all_category_cards, total_score]
    )

    model_chooser.change(
        fn=update_dashboard,
        inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
        outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
                model_chooser, model_multi_chooser, category_filter,
                leaderboard_output, category_chart, model_metadata,
                all_category_cards, total_score]
    )

    model_multi_chooser.change(
        fn=update_dashboard,
        inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
        outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
                model_chooser, model_multi_chooser, category_filter,
                leaderboard_output, category_chart, model_metadata,
                all_category_cards, total_score]
    )

    category_filter.change(
        fn=update_dashboard,
        inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
        outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
                model_chooser, model_multi_chooser, category_filter,
                leaderboard_output, category_chart, model_metadata,
                all_category_cards, total_score]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()