Spaces:
Sleeping
Sleeping
File size: 33,397 Bytes
a113cef a8af1a7 47a7ca5 a113cef f5ec716 a113cef a8af1a7 a113cef 47a7ca5 a82a162 6301ef2 8f52fcd 6301ef2 8f52fcd 6301ef2 a82a162 47a7ca5 b40662a 47a7ca5 a113cef a8af1a7 fcd3e1e 47a7ca5 a8af1a7 a113cef fcd3e1e 9959b2f fcd3e1e 9959b2f fcd3e1e 9959b2f 1f9fd23 9959b2f fcd3e1e 1f9fd23 fcd3e1e 9959b2f 1f9fd23 fcd3e1e 9959b2f 1f9fd23 9959b2f b40662a 9959b2f b40662a 1f9fd23 b40662a 9959b2f b40662a 1f9fd23 9959b2f fcd3e1e 9959b2f fcd3e1e 1f9fd23 fcd3e1e 9959b2f 1f9fd23 9959b2f e0bc7e2 9959b2f 1f9fd23 9959b2f fcd3e1e e8bb780 3064620 fcd3e1e 47a7ca5 fcd3e1e e8bb780 fcd3e1e e8bb780 fcd3e1e e8bb780 fcd3e1e e8bb780 fcd3e1e e8bb780 fcd3e1e e8bb780 fcd3e1e e8bb780 3064620 e8bb780 fcd3e1e 6301ef2 47a7ca5 6301ef2 fcd3e1e 6301ef2 fcd3e1e 6301ef2 fcd3e1e 6301ef2 fcd3e1e 6301ef2 a82a162 fcd3e1e 47a7ca5 fcd3e1e 47a7ca5 fcd3e1e 6301ef2 fcd3e1e 47a7ca5 fcd3e1e 47a7ca5 fcd3e1e 47a7ca5 fcd3e1e 47a7ca5 fcd3e1e 47a7ca5 fcd3e1e 47a7ca5 fcd3e1e 6301ef2 fcd3e1e 6301ef2 fcd3e1e 47a7ca5 fcd3e1e 6301ef2 fcd3e1e 6301ef2 fcd3e1e a113cef 47a7ca5 a113cef cd40158 a113cef cd40158 a113cef cd40158 9959b2f a113cef a8af1a7 9959b2f d53279a 9959b2f cd40158 3064620 a113cef cd40158 a8af1a7 cd40158 a8af1a7 cd40158 3064620 cd40158 3064620 cd40158 3064620 9959b2f cd40158 3064620 cd40158 3064620 cd40158 3064620 fcd3e1e cd40158 3064620 9959b2f 3064620 cd40158 3064620 cd40158 3064620 cd40158 3064620 cd40158 3064620 cd40158 3064620 fcd3e1e cd40158 3064620 cd40158 3064620 a113cef a8af1a7 3d04a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
import gradio as gr
import pandas as pd
import plotly.express as px
from dataclasses import dataclass, field
from typing import List, Dict, Tuple, Union
import json
import os
from collections import OrderedDict
import re
def load_css(css_file_path):
"""Load CSS from a file."""
with open(css_file_path, 'r') as f:
return f.read()
# In the main code:
css = load_css('dashboard.css')
@dataclass
class ScorecardCategory:
name: str
questions: List[Dict[str, Union[str, List[str]]]]
scores: Dict[str, int] = field(default_factory=dict)
def extract_category_number(category_name: str) -> int:
"""Extract the category number from the category name."""
match = re.match(r'^(\d+)\.?\s*.*$', category_name)
return int(match.group(1)) if match else float('inf')
def sort_categories(categories):
"""Sort categories by their numeric prefix."""
return sorted(categories, key=extract_category_number)
# def load_scorecard_templates(directory):
# templates = []
# for filename in os.listdir(directory):
# if filename.endswith('.json'):
# with open(os.path.join(directory, filename), 'r') as file:
# data = json.load(file)
# templates.append(ScorecardCategory(
# name=data['name'],
# questions=data['questions']
# ))
# return templates
def create_category_summary(category_data):
"""Create a summary section for a category"""
# Calculate statistics
total_sections = len(category_data)
completed_sections = sum(1 for section in category_data.values() if section['status'] == 'Yes')
na_sections = sum(1 for section in category_data.values() if section['status'] == 'N/A')
# Calculate completion rates
total_questions = 0
completed_questions = 0
evaluation_types = set()
has_human_eval = False
has_quantitative = False
has_documentation = False
for section in category_data.values():
if section['status'] != 'N/A':
questions = section.get('questions', {})
total_questions += len(questions)
completed_questions += sum(1 for q in questions.values() if q)
# Check for evaluation types
for question in questions.keys():
if 'human' in question.lower():
has_human_eval = True
if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']):
has_quantitative = True
if 'documentation' in question.lower():
has_documentation = True
completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0
# Create summary HTML
html = "<div class='summary-card'>"
html += "<div class='summary-title'>π Section Summary</div>"
# Completion metrics
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>π Completion Metrics</div>"
html += f"<div class='metric-row'><span class='metric-label'>Overall Completion Rate:</span> <span class='metric-value'>{completion_rate:.1f}%</span></div>"
html += f"<div class='metric-row'><span class='metric-label'>Sections Completed:</span> <span class='metric-value'>{completed_sections}/{total_sections}</span></div>"
html += "</div>"
# Evaluation Coverage
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>π― Evaluation Coverage</div>"
html += "<div class='coverage-grid'>"
html += f"<div class='coverage-item {get_coverage_class(has_human_eval)}'>π₯ Human Evaluation</div>"
html += f"<div class='coverage-item {get_coverage_class(has_quantitative)}'>π Quantitative Analysis</div>"
html += f"<div class='coverage-item {get_coverage_class(has_documentation)}'>π Documentation</div>"
html += "</div>"
html += "</div>"
# Status Breakdown
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>π Status Breakdown</div>"
html += create_status_pills(category_data)
html += "</div>"
html += "</div>"
return html
def create_overall_summary(model_data, selected_categories):
"""Create a comprehensive summary of all categories"""
scores = model_data['scores']
model_name = model_data['metadata']['Name']
# Initialize counters
total_sections = 0
completed_sections = 0
na_sections = 0
total_questions = 0
completed_questions = 0
# Track evaluation types across all categories
evaluation_types = {
'human': 0,
'quantitative': 0,
'documentation': 0,
'monitoring': 0,
'transparency': 0
}
# Calculate completion rates for categories
category_completion = {}
# Process all categories
for category, category_data in scores.items():
if category not in selected_categories:
continue # Skip unselected categories
category_questions = 0
category_completed = 0
category_na = 0
total_sections_in_category = len(category_data)
na_sections_in_category = sum(1 for section in category_data.values() if section['status'] == 'N/A')
for section in category_data.values():
total_sections += 1
if section['status'] == 'Yes':
completed_sections += 1
elif section['status'] == 'N/A':
na_sections += 1
category_na += 1
if section['status'] != 'N/A':
questions = section.get('questions', {})
section_total = len(questions)
section_completed = sum(1 for q in questions.values() if q)
total_questions += section_total
completed_questions += section_completed
category_questions += section_total
category_completed += section_completed
# Check for evaluation types
for question in questions.keys():
if 'human' in question.lower():
evaluation_types['human'] += 1
if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']):
evaluation_types['quantitative'] += 1
if 'documentation' in question.lower():
evaluation_types['documentation'] += 1
if 'monitoring' in question.lower():
evaluation_types['monitoring'] += 1
if 'transparency' in question.lower():
evaluation_types['transparency'] += 1
# Store category information
is_na = na_sections_in_category == total_sections_in_category
completion_rate = (category_completed / category_questions * 100) if category_questions > 0 and not is_na else 0
category_completion[category] = {
'completion_rate': completion_rate,
'is_na': is_na
}
# Create summary HTML
html = "<div class='card overall-summary-card'>"
html += f"<div class='card-title'>π {model_name} Social Impact Evaluation Summary</div>"
# Key metrics section
html += "<div class='summary-grid'>"
# Overall completion metrics
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>π Overall Completion</div>"
completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0
html += f"<div class='metric-row'><span class='metric-label'>Overall Completion Rate:</span> <span class='metric-value'>{completion_rate:.1f}%</span></div>"
html += f"<div class='metric-row'><span class='metric-label'>Sections Completed:</span> <span class='metric-value'>{completed_sections}/{total_sections}</span></div>"
html += f"<div class='metric-row'><span class='metric-label'>Questions Completed:</span> <span class='metric-value'>{completed_questions}/{total_questions}</span></div>"
html += "</div>"
# Evaluation coverage
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>π― Evaluation Types Coverage</div>"
html += "<div class='coverage-grid'>"
for eval_type, count in evaluation_types.items():
icon = {
'human': 'π₯',
'quantitative': 'π',
'documentation': 'π',
'monitoring': 'π‘',
'transparency': 'π'
}.get(eval_type, 'β')
has_coverage = count > 0
html += f"<div class='coverage-item {get_coverage_class(has_coverage)}'>{icon} {eval_type.title()}</div>"
html += "</div>"
html += "</div>"
html += "</div>" # End summary-grid
# Category breakdown
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>π Category Completion Breakdown</div>"
html += "<div class='category-completion-grid'>"
# Sort and filter categories
sorted_categories = [cat for cat in sort_categories(scores.keys()) if cat in selected_categories]
for category in sorted_categories:
info = category_completion[category]
category_name = category.split('. ', 1)[1] if '. ' in category else category
# Determine display text and style
if info['is_na']:
completion_text = "N/A"
bar_width = "0"
style_class = "na"
else:
completion_text = f"{info['completion_rate']:.1f}%"
bar_width = f"{info['completion_rate']}"
style_class = "active"
html += f"""
<div class='category-completion-item'>
<div class='category-name'>{category_name}</div>
<div class='completion-bar-container {style_class}'>
<div class='completion-bar' style='width: {bar_width}%;'></div>
<span class='completion-text'>{completion_text}</span>
</div>
</div>
"""
html += "</div></div>"
html += "</div>" # End overall-summary-card
return html
def get_coverage_class(has_feature):
"""Return CSS class based on feature presence"""
return 'covered' if has_feature else 'not-covered'
def create_status_pills(category_data):
"""Create status pill indicators"""
status_counts = {'Yes': 0, 'No': 0, 'N/A': 0}
for section in category_data.values():
status_counts[section['status']] += 1
html = "<div class='status-pills'>"
for status, count in status_counts.items():
html += f"<div class='status-pill {status.lower()}'>{status}: {count}</div>"
html += "</div>"
return html
def get_modality_icon(modality):
"""Return an emoji icon for each modality type."""
icons = {
"Text-to-Text": "π", # Memo icon for text-to-text
"Text-to-Image": "π¨", # Artist palette for text-to-image
"Image-to-Text": "π", # Magnifying glass for image-to-text
"Image-to-Image": "πΌοΈ", # Frame for image-to-image
"Audio": "π΅", # Musical note for audio
"Video": "π¬", # Clapper board for video
"Multimodal": "π" # Cycle arrows for multimodal
}
return icons.get(modality, "π«") # Default icon if modality not found
def create_metadata_card(metadata):
"""Create a formatted HTML card for metadata."""
html = "<div class='card metadata-card'>"
html += "<div class='card-title'>AI System Information</div>"
html += "<div class='metadata-content'>"
# Handle special formatting for modalities
modalities = metadata.get("Modalities", [])
formatted_modalities = ""
if modalities:
formatted_modalities = " ".join(
f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>"
for m in modalities
)
# Order of metadata display (customize as needed)
display_order = ["Name", "Provider", "Type", "URL"]
# Display ordered metadata first
for key in display_order:
if key in metadata:
value = metadata[key]
if key == "URL":
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> "
html += f"<a href='{value}' target='_blank' class='metadata-link'>{value}</a></div>"
else:
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>"
# Add modalities if present
if formatted_modalities:
html += f"<div class='metadata-row'><span class='metadata-label'>Modalities:</span> <div class='modality-container'>{formatted_modalities}</div></div>"
# Add any remaining metadata not in display_order
for key, value in metadata.items():
if key not in display_order and key != "Modalities":
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>"
html += "</div></div>"
return html
def load_models_from_json(directory):
models = {}
for filename in os.listdir(directory):
if filename.endswith('.json'):
with open(os.path.join(directory, filename), 'r') as file:
model_data = json.load(file)
model_name = model_data['metadata']['Name']
models[model_name] = model_data
return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower()))
# Load templates and models
# scorecard_template = load_scorecard_templates('scorecard_templates')
models = load_models_from_json('model_data')
def create_source_html(sources):
if not sources:
return ""
html = "<div class='sources-list'>"
for source in sources:
icon = source.get("type", "")
detail = source.get("detail", "")
name = source.get("name", detail)
html += f"<div class='source-item'>{icon} "
if detail.startswith("http"):
html += f"<a href='{detail}' target='_blank'>{name}</a>"
else:
html += name
html += "</div>"
html += "</div>"
return html
def create_leaderboard(selected_categories):
scores = []
for model, data in models.items():
total_score = 0
total_questions = 0
score_by_category = {}
# Calculate scores by category
for category_name, category in data['scores'].items():
category_score = 0
category_total = 0
all_na = True
for section in category.values():
if section['status'] != 'N/A':
all_na = False
questions = section.get('questions', {})
category_score += sum(1 for q in questions.values() if q)
category_total += len(questions)
if category_total > 0:
score_by_category[category_name] = (category_score / category_total) * 100
elif all_na:
score_by_category[category_name] = "N/A"
total_score += category_score
total_questions += category_total
# Calculate overall score
overall_all_na = all(
all(section['status'] == 'N/A' for section in category.values())
for category_name, category in data['scores'].items()
if category_name in selected_categories
)
score_percentage = "N/A" if overall_all_na else (
(total_score / total_questions * 100) if total_questions > 0 else 0
)
# Get model type and URL
model_type = data['metadata'].get('Type', 'Unknown')
model_url = data['metadata'].get('URL', '')
# Get modalities and create badges
modalities = data['metadata'].get('Modalities', [])
modality_badges = " ".join(
f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>"
for m in modalities
) if modalities else "<span class='modality-badge'>π« Unknown</span>"
# Create model name with HTML link if URL exists
model_display = f'<a href="{model_url}" target="_blank">{model}</a>' if model_url else model
# Create entry with numerical scores
model_entry = {
'AI System': model_display,
'Modality': f"<div class='modality-container'>{modality_badges}</div>",
'Overall Completion Rate': score_percentage
}
# Add selected category scores with emojis
category_map = {
'1. Bias, Stereotypes, and Representational Harms Evaluation': 'βοΈ Bias and Fairness',
'2. Cultural Values and Sensitive Content Evaluation': 'π Cultural Values',
'3. Disparate Performance Evaluation': 'π Disparate Performance',
'4. Environmental Costs and Carbon Emissions Evaluation': 'π± Environmental Impact',
'5. Privacy and Data Protection Evaluation': 'π Privacy',
'6. Financial Costs Evaluation': 'π° Financial Costs',
'7. Data and Content Moderation Labor Evaluation': 'π₯ Labor Practices'
}
for full_cat_name, display_name in category_map.items():
if full_cat_name in selected_categories:
score = score_by_category.get(full_cat_name, 0)
model_entry[display_name] = score
scores.append(model_entry)
# Convert to DataFrame
df = pd.DataFrame(scores)
# Sort by Overall Completion Rate descending, putting N/A at the end
df['_sort_value'] = df['Overall Completion Rate'].apply(
lambda x: -float('inf') if x == "N/A" else float(x)
)
df = df.sort_values('_sort_value', ascending=False)
df = df.drop('_sort_value', axis=1)
# Add rank column based on current sort
df.insert(0, 'Rank', range(1, len(df) + 1))
# Get completion rate columns (Overall + category-specific)
completion_rate_columns = ['Overall Completion Rate'] + [
display_name for full_cat_name, display_name in category_map.items()
if full_cat_name in selected_categories
]
# Format non-completion rate columns
df['Rank'] = df['Rank'].astype(str)
# Identify and format highest values for completion rate columns
for col in completion_rate_columns:
if col in df.columns:
# Filter out N/A values to find the maximum numerical value
numeric_values = df[df[col] != "N/A"][col]
if not numeric_values.empty:
max_value = numeric_values.max()
df[col] = df.apply(
lambda row: "N/A" if row[col] == "N/A"
else f"**{row[col]:.1f}%**" if row[col] == max_value
else f"{row[col]:.1f}%",
axis=1
)
else:
df[col] = df[col].apply(lambda x: "N/A")
return df
first_model = next(iter(models.values()))
category_choices = list(first_model['scores'].keys())
with gr.Column(visible=True) as leaderboard_tab:
leaderboard_output = gr.DataFrame(
value=create_leaderboard(category_choices),
interactive=False,
wrap=True,
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
)
def create_category_chart(selected_systems, selected_categories):
if not selected_systems:
# Create an empty figure with a prompt message
df = pd.DataFrame({'AI System': [], 'Category': [], 'Evaluations Completed': []})
fig = px.bar(df,
x='AI System',
y='Evaluations Completed',
title='Please select at least one AI system for comparison')
fig.update_layout(showlegend=True)
return fig
# Sort categories before processing
selected_categories = sort_categories(selected_categories)
data = []
for system_name in selected_systems:
for category in selected_categories:
if category in models[system_name]['scores']:
completed = 0
total = 0
for section in models[system_name]['scores'][category].values():
if section['status'] != 'N/A':
questions = section.get('questions', {})
completed += sum(1 for q in questions.values() if q)
total += len(questions)
if total > 0: # Only add if there are evaluations to do
data.append({
'AI System': system_name,
'Category': category.split('.')[1].strip(),
'Evaluations Completed': completed,
'Total Evaluations': total
})
df = pd.DataFrame(data)
if df.empty:
fig = px.bar(title='No data available for the selected AI systems and categories')
else:
fig = px.bar(
df,
x='AI System',
y='Evaluations Completed',
color='Category',
title='Number of Evaluations Completed by Category',
labels={
'Evaluations Completed': 'Evaluations Completed',
'AI System': 'AI System Name',
'Category': 'Evaluation Category'
},
hover_data=['Total Evaluations']
)
fig.update_layout(
showlegend=True,
xaxis_title="AI System Name",
yaxis_title="Number of Evaluations Completed",
# hovermode='x unified'
)
return fig
def update_detailed_scorecard(model, selected_categories):
if not model:
return [
gr.update(value="Please select a model to view details.", visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
selected_categories = sort_categories(selected_categories)
metadata_html = create_metadata_card(models[model]['metadata'])
overall_summary_html = create_overall_summary(models[model], selected_categories)
# Combine metadata and overall summary
combined_header = metadata_html + overall_summary_html
total_yes = 0
total_no = 0
total_na = 0
has_non_na = False
# Create category cards
all_cards_content = "<div class='container'>"
for category_name in selected_categories:
if category_name in models[model]['scores']:
category_data = models[model]['scores'][category_name]
card_content = f"<div class='card'><div class='card-title'>{category_name}</div>"
# Add category-specific summary at the top of each card
card_content += create_category_summary(category_data)
# Sort sections within each category
sorted_sections = sorted(category_data.items(),
key=lambda x: float(re.match(r'^(\d+\.?\d*)', x[0]).group(1)))
category_yes = 0
category_no = 0
category_na = 0
for section, details in sorted_sections:
status = details['status']
if status != 'N/A':
has_non_na = True
sources = details.get('sources', [])
questions = details.get('questions', {})
section_class = "section-na" if status == "N/A" else "section-active"
status_class = status.lower()
status_icon = "β" if status == "Yes" else "β" if status == "N/A" else "Γ"
card_content += f"<div class='section {section_class}'>"
card_content += f"<div class='section-header'><h3>{section}</h3>"
card_content += f"<span class='status-badge {status_class}'>{status_icon} {status}</span></div>"
if sources:
card_content += "<div class='sources-list'>"
for source in sources:
icon = source.get("type", "")
detail = source.get("detail", "")
name = source.get("name", detail)
card_content += f"<div class='source-item'>{icon} "
if detail.startswith("http"):
card_content += f"<a href='{detail}' target='_blank'>{name}</a>"
else:
card_content += name
card_content += "</div>"
card_content += "</div>"
if questions:
yes_count = sum(1 for v in questions.values() if v)
total_count = len(questions)
card_content += "<details class='question-accordion'>"
if status == "N/A":
card_content += f"<summary>View {total_count} N/A items</summary>"
else:
card_content += f"<summary>View details ({yes_count}/{total_count} completed)</summary>"
card_content += "<div class='questions'>"
for question, is_checked in questions.items():
if status == "N/A":
style_class = "na"
icon = "β"
category_na += 1
total_na += 1
else:
if is_checked:
style_class = "checked"
icon = "β"
category_yes += 1
total_yes += 1
else:
style_class = "unchecked"
icon = "β"
category_no += 1
total_no += 1
card_content += f"<div class='question-item {style_class}'>{icon} {question}</div>"
card_content += "</div></details>"
card_content += "</div>"
if category_yes + category_no > 0:
category_score = category_yes / (category_yes + category_no) * 100
card_content += f"<div class='category-score'>Completion Score Breakdown: {category_score:.2f}% Yes: {category_yes}, No: {category_no}, N/A: {category_na}</div>"
elif category_na > 0:
card_content += f"<div class='category-score'>Completion Score Breakdown: N/A (All {category_na} items not applicable)</div>"
card_content += "</div>"
all_cards_content += card_content
all_cards_content += "</div>"
# Create total score
if not has_non_na:
total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>"
elif total_yes + total_no > 0:
total_score = total_yes / (total_yes + total_no) * 100
total_score_md = f"<div class='total-score'>Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})</div>"
else:
total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>"
return [
gr.update(value=combined_header, visible=True),
gr.update(value=all_cards_content, visible=True),
gr.update(value=total_score_md, visible=True)
]
first_model = next(iter(models.values()))
category_choices = list(first_model['scores'].keys())
with gr.Blocks(css=css) as demo:
gr.Markdown("# AI System Social Impact Dashboard")
initial_df = create_leaderboard(category_choices)
with gr.Row():
tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"],
label="Select Tab", value="Leaderboard")
with gr.Row():
model_chooser = gr.Dropdown(choices=[""] + list(models.keys()),
label="Select AI System for Details",
value="",
interactive=True, visible=False)
model_multi_chooser = gr.Dropdown(choices=list(models.keys()),
label="Select AI Systems for Comparison",
value=[],
multiselect=True,
interactive=True,
visible=False,
info="Select one or more AI Systems")
# Category filter now visible for all tabs
category_filter = gr.CheckboxGroup(choices=category_choices,
label="Filter Categories",
value=category_choices)
with gr.Column(visible=True) as leaderboard_tab:
leaderboard_output = gr.DataFrame(
value=initial_df,
interactive=False,
wrap=True,
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
)
with gr.Column(visible=False) as category_analysis_tab:
# Initialize with empty plot
initial_plot = create_category_chart([], category_choices)
category_chart = gr.Plot(value=initial_plot)
with gr.Column(visible=False) as detailed_scorecard_tab:
model_metadata = gr.HTML()
all_category_cards = gr.HTML()
total_score = gr.Markdown()
def update_dashboard(tab, selected_models, selected_model, selected_categories):
# Default visibility states
component_states = {
"leaderboard": False,
"category_chart": False,
"detailed_scorecard": False,
"model_chooser": False,
"model_multi_chooser": False
}
# Initialize outputs with None
outputs = {
"leaderboard": None,
"category_chart": None,
"model_metadata": None,
"category_cards": None,
"total_score": None
}
# Update visibility based on selected tab
if tab == "Leaderboard":
component_states["leaderboard"] = True
outputs["leaderboard"] = create_leaderboard(selected_categories)
elif tab == "Category Analysis":
component_states["category_chart"] = True
component_states["model_multi_chooser"] = True
if selected_models: # Only update chart if models are selected
outputs["category_chart"] = create_category_chart(selected_models, selected_categories)
elif tab == "Detailed Scorecard":
component_states["detailed_scorecard"] = True
component_states["model_chooser"] = True
if selected_model:
scorecard_updates = update_detailed_scorecard(selected_model, selected_categories)
outputs["model_metadata"] = scorecard_updates[0]
outputs["category_cards"] = scorecard_updates[1]
outputs["total_score"] = scorecard_updates[2]
# Return updates in the correct order
return [
gr.update(visible=component_states["leaderboard"]),
gr.update(visible=component_states["category_chart"]),
gr.update(visible=component_states["detailed_scorecard"]),
gr.update(visible=component_states["model_chooser"]),
gr.update(visible=component_states["model_multi_chooser"]),
outputs["leaderboard"] if outputs["leaderboard"] is not None else gr.update(),
outputs["category_chart"] if outputs["category_chart"] is not None else gr.update(),
outputs["model_metadata"] if outputs["model_metadata"] is not None else gr.update(),
outputs["category_cards"] if outputs["category_cards"] is not None else gr.update(),
outputs["total_score"] if outputs["total_score"] is not None else gr.update()
]
# Set up event handlers
for component in [tab_selection, model_chooser, model_multi_chooser, category_filter]:
component.change(
fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser,
leaderboard_output, category_chart, model_metadata,
all_category_cards, total_score]
)
# Launch the app
if __name__ == "__main__":
demo.launch(ssr_mode=False) |