SIMPDashboard / app.py
evijit's picture
evijit HF staff
Upload 5 files
6301ef2 verified
raw
history blame
38.6 kB
import gradio as gr
import pandas as pd
import plotly.express as px
from dataclasses import dataclass, field
from typing import List, Dict, Tuple, Union
import json
import os
from collections import OrderedDict
import re
@dataclass
class ScorecardCategory:
name: str
questions: List[Dict[str, Union[str, List[str]]]]
scores: Dict[str, int] = field(default_factory=dict)
def extract_category_number(category_name: str) -> int:
"""Extract the category number from the category name."""
match = re.match(r'^(\d+)\.?\s*.*$', category_name)
return int(match.group(1)) if match else float('inf')
def sort_categories(categories):
"""Sort categories by their numeric prefix."""
return sorted(categories, key=extract_category_number)
# def load_scorecard_templates(directory):
# templates = []
# for filename in os.listdir(directory):
# if filename.endswith('.json'):
# with open(os.path.join(directory, filename), 'r') as file:
# data = json.load(file)
# templates.append(ScorecardCategory(
# name=data['name'],
# questions=data['questions']
# ))
# return templates
def create_category_summary(category_data):
"""Create a summary section for a category"""
# Calculate statistics
total_sections = len(category_data)
completed_sections = sum(1 for section in category_data.values() if section['status'] == 'Yes')
na_sections = sum(1 for section in category_data.values() if section['status'] == 'N/A')
# Calculate completion rates
total_questions = 0
completed_questions = 0
evaluation_types = set()
has_human_eval = False
has_quantitative = False
has_documentation = False
for section in category_data.values():
if section['status'] != 'N/A':
questions = section.get('questions', {})
total_questions += len(questions)
completed_questions += sum(1 for q in questions.values() if q)
# Check for evaluation types
for question in questions.keys():
if 'human' in question.lower():
has_human_eval = True
if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']):
has_quantitative = True
if 'documentation' in question.lower():
has_documentation = True
completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0
# Create summary HTML
html = "<div class='summary-card'>"
html += "<div class='summary-title'>πŸ“Š Section Summary</div>"
# Completion metrics
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>πŸ“ˆ Completion Metrics</div>"
html += f"<div class='metric-row'><span class='metric-label'>Overall Completion Rate:</span> <span class='metric-value'>{completion_rate:.1f}%</span></div>"
html += f"<div class='metric-row'><span class='metric-label'>Sections Completed:</span> <span class='metric-value'>{completed_sections}/{total_sections}</span></div>"
html += "</div>"
# Evaluation Coverage
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>🎯 Evaluation Coverage</div>"
html += "<div class='coverage-grid'>"
html += f"<div class='coverage-item {get_coverage_class(has_human_eval)}'>πŸ‘₯ Human Evaluation</div>"
html += f"<div class='coverage-item {get_coverage_class(has_quantitative)}'>πŸ“Š Quantitative Analysis</div>"
html += f"<div class='coverage-item {get_coverage_class(has_documentation)}'>πŸ“ Documentation</div>"
html += "</div>"
html += "</div>"
# Status Breakdown
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>πŸ“‹ Status Breakdown</div>"
html += create_status_pills(category_data)
html += "</div>"
html += "</div>"
return html
def create_overall_summary(model_data, selected_categories):
"""Create a comprehensive summary of all categories"""
scores = model_data['scores']
# Initialize counters
total_sections = 0
completed_sections = 0
na_sections = 0
total_questions = 0
completed_questions = 0
# Track evaluation types across all categories
evaluation_types = {
'human': 0,
'quantitative': 0,
'documentation': 0,
'monitoring': 0,
'transparency': 0
}
# Calculate completion rates for categories
category_completion = {}
# Process all categories
for category, category_data in scores.items():
if category not in selected_categories:
continue # Skip unselected categories
category_questions = 0
category_completed = 0
category_na = 0
total_sections_in_category = len(category_data)
na_sections_in_category = sum(1 for section in category_data.values() if section['status'] == 'N/A')
for section in category_data.values():
total_sections += 1
if section['status'] == 'Yes':
completed_sections += 1
elif section['status'] == 'N/A':
na_sections += 1
category_na += 1
if section['status'] != 'N/A':
questions = section.get('questions', {})
section_total = len(questions)
section_completed = sum(1 for q in questions.values() if q)
total_questions += section_total
completed_questions += section_completed
category_questions += section_total
category_completed += section_completed
# Check for evaluation types
for question in questions.keys():
if 'human' in question.lower():
evaluation_types['human'] += 1
if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']):
evaluation_types['quantitative'] += 1
if 'documentation' in question.lower():
evaluation_types['documentation'] += 1
if 'monitoring' in question.lower():
evaluation_types['monitoring'] += 1
if 'transparency' in question.lower():
evaluation_types['transparency'] += 1
# Store category information
is_na = na_sections_in_category == total_sections_in_category
completion_rate = (category_completed / category_questions * 100) if category_questions > 0 and not is_na else 0
category_completion[category] = {
'completion_rate': completion_rate,
'is_na': is_na
}
# Create summary HTML
html = "<div class='card overall-summary-card'>"
html += "<div class='card-title'>πŸ“Š Overall Model Evaluation Summary</div>"
# Key metrics section
html += "<div class='summary-grid'>"
# Overall completion metrics
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>πŸ“ˆ Overall Completion</div>"
completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0
html += f"<div class='metric-row'><span class='metric-label'>Overall Completion Rate:</span> <span class='metric-value'>{completion_rate:.1f}%</span></div>"
html += f"<div class='metric-row'><span class='metric-label'>Sections Completed:</span> <span class='metric-value'>{completed_sections}/{total_sections}</span></div>"
html += f"<div class='metric-row'><span class='metric-label'>Questions Completed:</span> <span class='metric-value'>{completed_questions}/{total_questions}</span></div>"
html += "</div>"
# Evaluation coverage
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>🎯 Evaluation Types Coverage</div>"
html += "<div class='coverage-grid'>"
for eval_type, count in evaluation_types.items():
icon = {
'human': 'πŸ‘₯',
'quantitative': 'πŸ“Š',
'documentation': 'πŸ“',
'monitoring': 'πŸ“‘',
'transparency': 'πŸ”'
}.get(eval_type, '❓')
has_coverage = count > 0
html += f"<div class='coverage-item {get_coverage_class(has_coverage)}'>{icon} {eval_type.title()}</div>"
html += "</div>"
html += "</div>"
html += "</div>" # End summary-grid
# Category breakdown
html += "<div class='summary-section'>"
html += "<div class='summary-subtitle'>πŸ“‹ Category Completion Breakdown</div>"
html += "<div class='category-completion-grid'>"
# Sort and filter categories
sorted_categories = [cat for cat in sort_categories(scores.keys()) if cat in selected_categories]
for category in sorted_categories:
info = category_completion[category]
category_name = category.split('. ', 1)[1] if '. ' in category else category
# remove last word from category_name
category_name = ' '.join(category_name.split(' ')[:-1])
# Determine display text and style
if info['is_na']:
completion_text = "N/A"
bar_width = "0"
style_class = "na"
else:
completion_text = f"{info['completion_rate']:.1f}%"
bar_width = f"{info['completion_rate']}"
style_class = "active"
html += f"""
<div class='category-completion-item'>
<div class='category-name'>{category_name}</div>
<div class='completion-bar-container {style_class}'>
<div class='completion-bar' style='width: {bar_width}%;'></div>
<span class='completion-text'>{completion_text}</span>
</div>
</div>
"""
html += "</div></div>"
html += "</div>" # End overall-summary-card
return html
def get_coverage_class(has_feature):
"""Return CSS class based on feature presence"""
return 'covered' if has_feature else 'not-covered'
def create_status_pills(category_data):
"""Create status pill indicators"""
status_counts = {'Yes': 0, 'No': 0, 'N/A': 0}
for section in category_data.values():
status_counts[section['status']] += 1
html = "<div class='status-pills'>"
for status, count in status_counts.items():
html += f"<div class='status-pill {status.lower()}'>{status}: {count}</div>"
html += "</div>"
return html
def get_modality_icon(modality):
"""Return an emoji icon for each modality type."""
icons = {
"Text-to-Text": "πŸ“", # Memo icon for text-to-text
"Text-to-Image": "🎨", # Artist palette for text-to-image
"Image-to-Text": "πŸ”", # Magnifying glass for image-to-text
"Image-to-Image": "πŸ–ΌοΈ", # Frame for image-to-image
"Audio": "🎡", # Musical note for audio
"Video": "🎬", # Clapper board for video
"Multimodal": "πŸ”„" # Cycle arrows for multimodal
}
return icons.get(modality, "πŸ’«") # Default icon if modality not found
def create_metadata_card(metadata):
"""Create a formatted HTML card for metadata."""
html = "<div class='card metadata-card'>"
html += "<div class='card-title'>Model Information</div>"
html += "<div class='metadata-content'>"
# Handle special formatting for modalities
modalities = metadata.get("Modalities", [])
formatted_modalities = ""
if modalities:
formatted_modalities = " ".join(
f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>"
for m in modalities
)
# Order of metadata display (customize as needed)
display_order = ["Name", "Provider", "Type", "URL"]
# Display ordered metadata first
for key in display_order:
if key in metadata:
value = metadata[key]
if key == "URL":
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> "
html += f"<a href='{value}' target='_blank' class='metadata-link'>{value}</a></div>"
else:
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>"
# Add modalities if present
if formatted_modalities:
html += f"<div class='metadata-row'><span class='metadata-label'>Modalities:</span> <div class='modality-container'>{formatted_modalities}</div></div>"
# Add any remaining metadata not in display_order
for key, value in metadata.items():
if key not in display_order and key != "Modalities":
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>"
html += "</div></div>"
return html
def load_models_from_json(directory):
models = {}
for filename in os.listdir(directory):
if filename.endswith('.json'):
with open(os.path.join(directory, filename), 'r') as file:
model_data = json.load(file)
model_name = model_data['metadata']['Name']
models[model_name] = model_data
return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower()))
# Load templates and models
# scorecard_template = load_scorecard_templates('scorecard_templates')
models = load_models_from_json('model_data')
def create_source_html(sources):
if not sources:
return ""
html = "<div class='sources-list'>"
for source in sources:
icon = source.get("type", "")
detail = source.get("detail", "")
name = source.get("name", detail)
html += f"<div class='source-item'>{icon} "
if detail.startswith("http"):
html += f"<a href='{detail}' target='_blank'>{name}</a>"
else:
html += name
html += "</div>"
html += "</div>"
return html
def create_leaderboard():
scores = []
for model, data in models.items():
total_score = 0
total_questions = 0
for category in data['scores'].values():
for section in category.values():
if section['status'] != 'N/A':
questions = section.get('questions', {})
total_score += sum(1 for q in questions.values() if q)
total_questions += len(questions)
score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0
scores.append((model, score_percentage))
df = pd.DataFrame(scores, columns=['Model', 'Score Percentage'])
df = df.sort_values('Score Percentage', ascending=False).reset_index(drop=True)
html = "<div class='card leaderboard-card'>"
html += "<div class='card-title'>AI Model Social Impact Leaderboard</div>"
html += "<table class='leaderboard-table'>"
html += "<tr><th>Rank</th><th>Model</th><th>Score Percentage</th></tr>"
for i, (_, row) in enumerate(df.iterrows(), 1):
html += f"<tr><td>{i}</td><td>{row['Model']}</td><td>{row['Score Percentage']:.2f}%</td></tr>"
html += "</table></div>"
return html
def create_category_chart(selected_models, selected_categories):
if not selected_models:
return px.bar(title='Please select at least one model for comparison')
# Sort categories before processing
selected_categories = sort_categories(selected_categories)
data = []
for model in selected_models:
for category in selected_categories:
if category in models[model]['scores']:
total_score = 0
total_questions = 0
for section in models[model]['scores'][category].values():
if section['status'] != 'N/A':
questions = section.get('questions', {})
total_score += sum(1 for q in questions.values() if q)
total_questions += len(questions)
score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0
data.append({
'Model': model,
'Category': category,
'Score Percentage': score_percentage
})
df = pd.DataFrame(data)
if df.empty:
return px.bar(title='No data available for the selected models and categories')
fig = px.bar(df, x='Model', y='Score Percentage', color='Category',
title='AI Model Scores by Category',
labels={'Score Percentage': 'Score Percentage'},
category_orders={"Category": selected_categories})
return fig
def update_detailed_scorecard(model, selected_categories):
if not model:
return [
gr.update(value="Please select a model to view details.", visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
selected_categories = sort_categories(selected_categories)
metadata_html = create_metadata_card(models[model]['metadata'])
overall_summary_html = create_overall_summary(models[model], selected_categories)
# Combine metadata and overall summary
combined_header = metadata_html + overall_summary_html
total_yes = 0
total_no = 0
total_na = 0
has_non_na = False
# Create category cards
all_cards_content = "<div class='container'>"
for category_name in selected_categories:
if category_name in models[model]['scores']:
category_data = models[model]['scores'][category_name]
card_content = f"<div class='card'><div class='card-title'>{category_name}</div>"
# Add category-specific summary at the top of each card
card_content += create_category_summary(category_data)
# Sort sections within each category
sorted_sections = sorted(category_data.items(),
key=lambda x: float(re.match(r'^(\d+\.?\d*)', x[0]).group(1)))
category_yes = 0
category_no = 0
category_na = 0
for section, details in sorted_sections:
status = details['status']
if status != 'N/A':
has_non_na = True
sources = details.get('sources', [])
questions = details.get('questions', {})
section_class = "section-na" if status == "N/A" else "section-active"
status_class = status.lower()
status_icon = "●" if status == "Yes" else "β—‹" if status == "N/A" else "Γ—"
card_content += f"<div class='section {section_class}'>"
card_content += f"<div class='section-header'><h3>{section}</h3>"
card_content += f"<span class='status-badge {status_class}'>{status_icon} {status}</span></div>"
if sources:
card_content += "<div class='sources-list'>"
for source in sources:
icon = source.get("type", "")
detail = source.get("detail", "")
name = source.get("name", detail)
card_content += f"<div class='source-item'>{icon} "
if detail.startswith("http"):
card_content += f"<a href='{detail}' target='_blank'>{name}</a>"
else:
card_content += name
card_content += "</div>"
card_content += "</div>"
if questions:
yes_count = sum(1 for v in questions.values() if v)
total_count = len(questions)
card_content += "<details class='question-accordion'>"
if status == "N/A":
card_content += f"<summary>View {total_count} N/A items</summary>"
else:
card_content += f"<summary>View details ({yes_count}/{total_count} completed)</summary>"
card_content += "<div class='questions'>"
for question, is_checked in questions.items():
if status == "N/A":
style_class = "na"
icon = "β—‹"
category_na += 1
total_na += 1
else:
if is_checked:
style_class = "checked"
icon = "βœ“"
category_yes += 1
total_yes += 1
else:
style_class = "unchecked"
icon = "βœ—"
category_no += 1
total_no += 1
card_content += f"<div class='question-item {style_class}'>{icon} {question}</div>"
card_content += "</div></details>"
card_content += "</div>"
if category_yes + category_no > 0:
category_score = category_yes / (category_yes + category_no) * 100
card_content += f"<div class='category-score'>Completion Score Breakdown: {category_score:.2f}% Yes: {category_yes}, No: {category_no}, N/A: {category_na}</div>"
elif category_na > 0:
card_content += f"<div class='category-score'>Completion Score Breakdown: N/A (All {category_na} items not applicable)</div>"
card_content += "</div>"
all_cards_content += card_content
all_cards_content += "</div>"
# Create total score
if not has_non_na:
total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>"
elif total_yes + total_no > 0:
total_score = total_yes / (total_yes + total_no) * 100
total_score_md = f"<div class='total-score'>Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})</div>"
else:
total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>"
return [
gr.update(value=combined_header, visible=True),
gr.update(value=all_cards_content, visible=True),
gr.update(value=total_score_md, visible=True)
]
css = """
.container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
}
.container.svelte-1hfxrpf.svelte-1hfxrpf {
height: 0%;
}
.card {
width: calc(50% - 20px);
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #ffffff;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.card:hover {
box-shadow: 0 6px 8px rgba(0,0,0,0.15);
transform: translateY(-5px);
}
.card-title {
font-size: 1.4em;
font-weight: bold;
margin-bottom: 15px;
color: #333;
border-bottom: 2px solid #e0e0e0;
padding-bottom: 10px;
}
.sources-list {
margin: 10px 0;
}
.source-item {
margin: 5px 0;
padding: 5px;
background-color: #f8f9fa;
border-radius: 4px;
}
.question-item {
margin: 5px 0;
padding: 8px;
border-radius: 4px;
}
.question-item.checked {
background-color: #e6ffe6;
}
.question-item.unchecked {
background-color: #ffe6e6;
}
.category-score, .total-score {
background-color: #f0f8ff;
border: 1px solid #b0d4ff;
border-radius: 5px;
padding: 10px;
margin-top: 15px;
font-weight: bold;
text-align: center;
}
.total-score {
font-size: 1.2em;
background-color: #e6f3ff;
border-color: #80bdff;
}
.leaderboard-card {
width: 100%;
max-width: 800px;
margin: 0 auto;
}
.leaderboard-table {
width: 100%;
border-collapse: collapse;
}
.leaderboard-table th, .leaderboard-table td {
padding: 10px;
text-align: left;
border-bottom: 1px solid #e0e0e0;
}
.leaderboard-table th {
background-color: #f2f2f2;
font-weight: bold;
}
.section {
margin-bottom: 20px;
padding: 15px;
border-radius: 5px;
background-color: #f8f9fa;
}
@media (max-width: 768px) {
.card {
width: 100%;
}
}
.dark {
background-color: #1a1a1a;
color: #e0e0e0;
.card {
background-color: #2a2a2a;
border-color: #444;
}
.card-title {
color: #fff;
border-bottom-color: #444;
}
.source-item {
background-color: #2a2a2a;
}
.question-item.checked {
background-color: #1a3a1a;
}
.question-item.unchecked {
background-color: #3a1a1a;
}
.section {
background-color: #2a2a2a;
}
.category-score, .total-score {
background-color: #2c3e50;
border-color: #34495e;
}
.leaderboard-table th {
background-color: #2c3e50;
}
}
.section-na {
opacity: 0.6;
}
.question-item.na {
background-color: #f0f0f0;
color: #666;
}
.dark .question-item.na {
background-color: #2d2d2d;
color: #999;
}
.section-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;
}
.status-badge {
font-size: 0.9em;
padding: 4px 8px;
border-radius: 12px;
font-weight: 500;
}
.status-badge.yes {
background-color: #e6ffe6;
color: #006600;
}
.status-badge.no {
background-color: #ffe6e6;
color: #990000;
}
.status-badge.n\/a {
background-color: #f0f0f0;
color: #666666;
}
.question-accordion {
margin-top: 10px;
}
.question-accordion summary {
cursor: pointer;
padding: 8px;
background-color: #f8f9fa;
border-radius: 4px;
margin-bottom: 10px;
font-weight: 500;
}
.question-accordion summary:hover {
background-color: #e9ecef;
}
.dark .status-badge.yes {
background-color: #1a3a1a;
color: #90EE90;
}
.dark .status-badge.no {
background-color: #3a1a1a;
color: #FFB6B6;
}
.dark .status-badge.n\/a {
background-color: #2d2d2d;
color: #999999;
}
.dark .question-accordion summary {
background-color: #2a2a2a;
}
.dark .question-accordion summary:hover {
background-color: #333333;
}
.metadata-card {
margin-bottom: 30px;
width: 100% !important;
}
.metadata-content {
display: flex;
flex-direction: column;
gap: 12px;
}
.metadata-row {
display: flex;
align-items: flex-start;
gap: 10px;
line-height: 1.5;
}
.metadata-label {
font-weight: 600;
min-width: 100px;
color: #555;
}
.metadata-value {
color: #333;
}
.metadata-link {
color: #007bff;
text-decoration: none;
}
.metadata-link:hover {
text-decoration: underline;
}
.modality-container {
display: flex;
flex-wrap: wrap;
gap: 8px;
}
.modality-badge {
display: inline-flex;
align-items: center;
gap: 4px;
padding: 4px 10px;
background-color: #f0f7ff;
border: 1px solid #cce3ff;
border-radius: 15px;
font-size: 0.9em;
color: #0066cc;
}
.dark .metadata-label {
color: #aaa;
}
.dark .metadata-value {
color: #ddd;
}
.dark .metadata-link {
color: #66b3ff;
}
.dark .modality-badge {
background-color: #1a2733;
border-color: #2c3e50;
color: #99ccff;
}
.summary-card {
background-color: #f8f9fa;
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 16px;
margin-bottom: 20px;
}
.summary-title {
font-size: 1.2em;
font-weight: bold;
margin-bottom: 12px;
color: #333;
}
.summary-section {
margin-bottom: 16px;
}
.summary-subtitle {
font-size: 1em;
font-weight: 600;
color: #555;
margin-bottom: 8px;
}
.metric-row {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 4px;
}
.metric-label {
color: #666;
}
.metric-value {
font-weight: 600;
color: #333;
}
.coverage-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 8px;
margin-top: 8px;
}
.coverage-item {
padding: 8px;
border-radius: 6px;
text-align: center;
font-size: 0.9em;
}
.coverage-item.covered {
background-color: #e6ffe6;
color: #006600;
border: 1px solid #b3ffb3;
}
.coverage-item.not-covered {
background-color: #f5f5f5;
color: #666;
border: 1px solid #ddd;
}
.status-pills {
display: flex;
gap: 8px;
flex-wrap: wrap;
}
.status-pill {
padding: 4px 12px;
border-radius: 16px;
font-size: 0.9em;
font-weight: 500;
}
.status-pill.yes {
background-color: #e6ffe6;
color: #006600;
border: 1px solid #b3ffb3;
}
.status-pill.no {
background-color: #ffe6e6;
color: #990000;
border: 1px solid #ffb3b3;
}
.status-pill.n\\/a {
background-color: #f5f5f5;
color: #666;
border: 1px solid #ddd;
}
.dark .summary-card {
background-color: #2a2a2a;
border-color: #444;
}
.dark .summary-title,
.dark .summary-subtitle {
color: #e0e0e0;
}
.dark .metric-label {
color: #999;
}
.dark .metric-value {
color: #fff;
}
.dark .coverage-item.covered {
background-color: #1a3a1a;
color: #90EE90;
border-color: #2d5a2d;
}
.dark .coverage-item.not-covered {
background-color: #333;
color: #999;
border-color: #444;
}
.dark .status-pill.yes {
background-color: #1a3a1a;
color: #90EE90;
border-color: #2d5a2d;
}
.dark .status-pill.no {
background-color: #3a1a1a;
color: #FFB6B6;
border-color: #5a2d2d;
}
.dark .status-pill.n\\/a {
background-color: #333;
color: #999;
border-color: #444;
}
.overall-summary-card {
width: 100% !important;
margin-bottom: 30px;
}
.summary-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin-bottom: 20px;
}
.category-completion-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 16px;
margin-top: 12px;
}
.category-completion-item {
background-color: #f8f9fa;
border-radius: 8px;
padding: 12px;
}
.category-name {
font-size: 0.9em;
font-weight: 500;
margin-bottom: 8px;
color: #555;
}
.completion-bar-container {
height: 24px;
background-color: #eee;
border-radius: 12px;
position: relative;
overflow: hidden;
}
.completion-bar {
height: 100%;
background-color: #4CAF50;
transition: width 0.3s ease;
}
.completion-text {
position: absolute;
right: 8px;
top: 50%;
transform: translateY(-50%);
font-size: 0.8em;
font-weight: 600;
color: #333;
}
.dark .category-completion-item {
background-color: #2a2a2a;
}
.dark .category-name {
color: #ccc;
}
.dark .completion-bar-container {
background-color: #333;
}
.dark .completion-bar {
background-color: #2e7d32;
}
.dark .completion-text {
color: #fff;
}
.completion-bar-container.not-selected {
opacity: 0.5;
background-color: #f0f0f0;
}
.completion-bar-container.na {
background-color: #f0f0f0;
}
.completion-bar-container.na .completion-bar {
background-color: #999;
width: 0 !important; /* Ensure no bar shows for N/A */
}
.dark .completion-bar-container.na {
background-color: #2d2d2d;
}
.dark .completion-bar-container.na .completion-bar {
background-color: #666;
}
.category-completion-item {
background-color: #f8f9fa;
border-radius: 8px;
padding: 12px;
height: 80px;
display: grid;
grid-template-rows: 1fr auto;
gap: 8px;
}
.category-name {
font-size: 0.9em;
font-weight: 500;
color: #555;
align-self: start;
line-height: 1.3;
}
.completion-bar-container {
height: 24px;
background-color: #eee;
border-radius: 12px;
position: relative;
overflow: hidden;
align-self: end;
}
"""
first_model = next(iter(models.values()))
category_choices = list(first_model['scores'].keys())
with gr.Blocks(css=css) as demo:
gr.Markdown("# AI Model Social Impact Scorecard Dashboard")
with gr.Row():
tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"],
label="Select Tab", value="Leaderboard")
with gr.Row():
model_chooser = gr.Dropdown(choices=[""] + list(models.keys()),
label="Select Model for Details",
value="",
interactive=True, visible=False)
model_multi_chooser = gr.Dropdown(choices=list(models.keys()),
label="Select Models for Comparison",
multiselect=True, interactive=True, visible=False)
category_filter = gr.CheckboxGroup(choices=category_choices,
label="Filter Categories",
value=category_choices,
visible=False)
with gr.Column(visible=True) as leaderboard_tab:
leaderboard_output = gr.HTML()
with gr.Column(visible=False) as category_analysis_tab:
category_chart = gr.Plot()
with gr.Column(visible=False) as detailed_scorecard_tab:
model_metadata = gr.HTML()
all_category_cards = gr.HTML()
total_score = gr.Markdown()
# Initialize the dashboard with the leaderboard
leaderboard_output.value = create_leaderboard()
def update_dashboard(tab, selected_models, selected_model, selected_categories):
leaderboard_visibility = gr.update(visible=False)
category_chart_visibility = gr.update(visible=False)
detailed_scorecard_visibility = gr.update(visible=False)
model_chooser_visibility = gr.update(visible=False)
model_multi_chooser_visibility = gr.update(visible=False)
category_filter_visibility = gr.update(visible=False)
if tab == "Leaderboard":
leaderboard_visibility = gr.update(visible=True)
leaderboard_html = create_leaderboard()
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
gr.update(value=leaderboard_html), gr.update(), gr.update(), gr.update(), gr.update()]
elif tab == "Category Analysis":
category_chart_visibility = gr.update(visible=True)
model_multi_chooser_visibility = gr.update(visible=True)
category_filter_visibility = gr.update(visible=True)
category_plot = create_category_chart(selected_models or [], selected_categories)
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
gr.update(), gr.update(value=category_plot), gr.update(), gr.update(), gr.update()]
elif tab == "Detailed Scorecard":
detailed_scorecard_visibility = gr.update(visible=True)
model_chooser_visibility = gr.update(visible=True)
category_filter_visibility = gr.update(visible=True)
if selected_model:
scorecard_updates = update_detailed_scorecard(selected_model, selected_categories)
else:
scorecard_updates = [
gr.update(value="Please select a model to view details.", visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
gr.update(), gr.update()] + scorecard_updates
# Set up event handlers
tab_selection.change(
fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata,
all_category_cards, total_score]
)
model_chooser.change(
fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata,
all_category_cards, total_score]
)
model_multi_chooser.change(
fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata,
all_category_cards, total_score]
)
category_filter.change(
fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata,
all_category_cards, total_score]
)
# Launch the app
if __name__ == "__main__":
demo.launch()