Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
from dataclasses import dataclass, field | |
from typing import List, Dict, Tuple, Union | |
import json | |
import os | |
from collections import OrderedDict | |
import re | |
class ScorecardCategory: | |
name: str | |
questions: List[Dict[str, Union[str, List[str]]]] | |
scores: Dict[str, int] = field(default_factory=dict) | |
def extract_category_number(category_name: str) -> int: | |
"""Extract the category number from the category name.""" | |
match = re.match(r'^(\d+)\.?\s*.*$', category_name) | |
return int(match.group(1)) if match else float('inf') | |
def sort_categories(categories): | |
"""Sort categories by their numeric prefix.""" | |
return sorted(categories, key=extract_category_number) | |
# def load_scorecard_templates(directory): | |
# templates = [] | |
# for filename in os.listdir(directory): | |
# if filename.endswith('.json'): | |
# with open(os.path.join(directory, filename), 'r') as file: | |
# data = json.load(file) | |
# templates.append(ScorecardCategory( | |
# name=data['name'], | |
# questions=data['questions'] | |
# )) | |
# return templates | |
def create_category_summary(category_data): | |
"""Create a summary section for a category""" | |
# Calculate statistics | |
total_sections = len(category_data) | |
completed_sections = sum(1 for section in category_data.values() if section['status'] == 'Yes') | |
na_sections = sum(1 for section in category_data.values() if section['status'] == 'N/A') | |
# Calculate completion rates | |
total_questions = 0 | |
completed_questions = 0 | |
evaluation_types = set() | |
has_human_eval = False | |
has_quantitative = False | |
has_documentation = False | |
for section in category_data.values(): | |
if section['status'] != 'N/A': | |
questions = section.get('questions', {}) | |
total_questions += len(questions) | |
completed_questions += sum(1 for q in questions.values() if q) | |
# Check for evaluation types | |
for question in questions.keys(): | |
if 'human' in question.lower(): | |
has_human_eval = True | |
if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']): | |
has_quantitative = True | |
if 'documentation' in question.lower(): | |
has_documentation = True | |
completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0 | |
# Create summary HTML | |
html = "<div class='summary-card'>" | |
html += "<div class='summary-title'>π Section Summary</div>" | |
# Completion metrics | |
html += "<div class='summary-section'>" | |
html += "<div class='summary-subtitle'>π Completion Metrics</div>" | |
html += f"<div class='metric-row'><span class='metric-label'>Overall Completion Rate:</span> <span class='metric-value'>{completion_rate:.1f}%</span></div>" | |
html += f"<div class='metric-row'><span class='metric-label'>Sections Completed:</span> <span class='metric-value'>{completed_sections}/{total_sections}</span></div>" | |
html += "</div>" | |
# Evaluation Coverage | |
html += "<div class='summary-section'>" | |
html += "<div class='summary-subtitle'>π― Evaluation Coverage</div>" | |
html += "<div class='coverage-grid'>" | |
html += f"<div class='coverage-item {get_coverage_class(has_human_eval)}'>π₯ Human Evaluation</div>" | |
html += f"<div class='coverage-item {get_coverage_class(has_quantitative)}'>π Quantitative Analysis</div>" | |
html += f"<div class='coverage-item {get_coverage_class(has_documentation)}'>π Documentation</div>" | |
html += "</div>" | |
html += "</div>" | |
# Status Breakdown | |
html += "<div class='summary-section'>" | |
html += "<div class='summary-subtitle'>π Status Breakdown</div>" | |
html += create_status_pills(category_data) | |
html += "</div>" | |
html += "</div>" | |
return html | |
def create_overall_summary(model_data, selected_categories): | |
"""Create a comprehensive summary of all categories""" | |
scores = model_data['scores'] | |
# Initialize counters | |
total_sections = 0 | |
completed_sections = 0 | |
na_sections = 0 | |
total_questions = 0 | |
completed_questions = 0 | |
# Track evaluation types across all categories | |
evaluation_types = { | |
'human': 0, | |
'quantitative': 0, | |
'documentation': 0, | |
'monitoring': 0, | |
'transparency': 0 | |
} | |
# Calculate completion rates for categories | |
category_completion = {} | |
# Process all categories | |
for category, category_data in scores.items(): | |
if category not in selected_categories: | |
continue # Skip unselected categories | |
category_questions = 0 | |
category_completed = 0 | |
category_na = 0 | |
total_sections_in_category = len(category_data) | |
na_sections_in_category = sum(1 for section in category_data.values() if section['status'] == 'N/A') | |
for section in category_data.values(): | |
total_sections += 1 | |
if section['status'] == 'Yes': | |
completed_sections += 1 | |
elif section['status'] == 'N/A': | |
na_sections += 1 | |
category_na += 1 | |
if section['status'] != 'N/A': | |
questions = section.get('questions', {}) | |
section_total = len(questions) | |
section_completed = sum(1 for q in questions.values() if q) | |
total_questions += section_total | |
completed_questions += section_completed | |
category_questions += section_total | |
category_completed += section_completed | |
# Check for evaluation types | |
for question in questions.keys(): | |
if 'human' in question.lower(): | |
evaluation_types['human'] += 1 | |
if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']): | |
evaluation_types['quantitative'] += 1 | |
if 'documentation' in question.lower(): | |
evaluation_types['documentation'] += 1 | |
if 'monitoring' in question.lower(): | |
evaluation_types['monitoring'] += 1 | |
if 'transparency' in question.lower(): | |
evaluation_types['transparency'] += 1 | |
# Store category information | |
is_na = na_sections_in_category == total_sections_in_category | |
completion_rate = (category_completed / category_questions * 100) if category_questions > 0 and not is_na else 0 | |
category_completion[category] = { | |
'completion_rate': completion_rate, | |
'is_na': is_na | |
} | |
# Create summary HTML | |
html = "<div class='card overall-summary-card'>" | |
html += "<div class='card-title'>π Overall Model Evaluation Summary</div>" | |
# Key metrics section | |
html += "<div class='summary-grid'>" | |
# Overall completion metrics | |
html += "<div class='summary-section'>" | |
html += "<div class='summary-subtitle'>π Overall Completion</div>" | |
completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0 | |
html += f"<div class='metric-row'><span class='metric-label'>Overall Completion Rate:</span> <span class='metric-value'>{completion_rate:.1f}%</span></div>" | |
html += f"<div class='metric-row'><span class='metric-label'>Sections Completed:</span> <span class='metric-value'>{completed_sections}/{total_sections}</span></div>" | |
html += f"<div class='metric-row'><span class='metric-label'>Questions Completed:</span> <span class='metric-value'>{completed_questions}/{total_questions}</span></div>" | |
html += "</div>" | |
# Evaluation coverage | |
html += "<div class='summary-section'>" | |
html += "<div class='summary-subtitle'>π― Evaluation Types Coverage</div>" | |
html += "<div class='coverage-grid'>" | |
for eval_type, count in evaluation_types.items(): | |
icon = { | |
'human': 'π₯', | |
'quantitative': 'π', | |
'documentation': 'π', | |
'monitoring': 'π‘', | |
'transparency': 'π' | |
}.get(eval_type, 'β') | |
has_coverage = count > 0 | |
html += f"<div class='coverage-item {get_coverage_class(has_coverage)}'>{icon} {eval_type.title()}</div>" | |
html += "</div>" | |
html += "</div>" | |
html += "</div>" # End summary-grid | |
# Category breakdown | |
html += "<div class='summary-section'>" | |
html += "<div class='summary-subtitle'>π Category Completion Breakdown</div>" | |
html += "<div class='category-completion-grid'>" | |
# Sort and filter categories | |
sorted_categories = [cat for cat in sort_categories(scores.keys()) if cat in selected_categories] | |
for category in sorted_categories: | |
info = category_completion[category] | |
category_name = category.split('. ', 1)[1] if '. ' in category else category | |
# remove last word from category_name | |
category_name = ' '.join(category_name.split(' ')[:-1]) | |
# Determine display text and style | |
if info['is_na']: | |
completion_text = "N/A" | |
bar_width = "0" | |
style_class = "na" | |
else: | |
completion_text = f"{info['completion_rate']:.1f}%" | |
bar_width = f"{info['completion_rate']}" | |
style_class = "active" | |
html += f""" | |
<div class='category-completion-item'> | |
<div class='category-name'>{category_name}</div> | |
<div class='completion-bar-container {style_class}'> | |
<div class='completion-bar' style='width: {bar_width}%;'></div> | |
<span class='completion-text'>{completion_text}</span> | |
</div> | |
</div> | |
""" | |
html += "</div></div>" | |
html += "</div>" # End overall-summary-card | |
return html | |
def get_coverage_class(has_feature): | |
"""Return CSS class based on feature presence""" | |
return 'covered' if has_feature else 'not-covered' | |
def create_status_pills(category_data): | |
"""Create status pill indicators""" | |
status_counts = {'Yes': 0, 'No': 0, 'N/A': 0} | |
for section in category_data.values(): | |
status_counts[section['status']] += 1 | |
html = "<div class='status-pills'>" | |
for status, count in status_counts.items(): | |
html += f"<div class='status-pill {status.lower()}'>{status}: {count}</div>" | |
html += "</div>" | |
return html | |
def get_modality_icon(modality): | |
"""Return an emoji icon for each modality type.""" | |
icons = { | |
"Text-to-Text": "π", # Memo icon for text-to-text | |
"Text-to-Image": "π¨", # Artist palette for text-to-image | |
"Image-to-Text": "π", # Magnifying glass for image-to-text | |
"Image-to-Image": "πΌοΈ", # Frame for image-to-image | |
"Audio": "π΅", # Musical note for audio | |
"Video": "π¬", # Clapper board for video | |
"Multimodal": "π" # Cycle arrows for multimodal | |
} | |
return icons.get(modality, "π«") # Default icon if modality not found | |
def create_metadata_card(metadata): | |
"""Create a formatted HTML card for metadata.""" | |
html = "<div class='card metadata-card'>" | |
html += "<div class='card-title'>Model Information</div>" | |
html += "<div class='metadata-content'>" | |
# Handle special formatting for modalities | |
modalities = metadata.get("Modalities", []) | |
formatted_modalities = "" | |
if modalities: | |
formatted_modalities = " ".join( | |
f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>" | |
for m in modalities | |
) | |
# Order of metadata display (customize as needed) | |
display_order = ["Name", "Provider", "Type", "URL"] | |
# Display ordered metadata first | |
for key in display_order: | |
if key in metadata: | |
value = metadata[key] | |
if key == "URL": | |
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> " | |
html += f"<a href='{value}' target='_blank' class='metadata-link'>{value}</a></div>" | |
else: | |
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>" | |
# Add modalities if present | |
if formatted_modalities: | |
html += f"<div class='metadata-row'><span class='metadata-label'>Modalities:</span> <div class='modality-container'>{formatted_modalities}</div></div>" | |
# Add any remaining metadata not in display_order | |
for key, value in metadata.items(): | |
if key not in display_order and key != "Modalities": | |
html += f"<div class='metadata-row'><span class='metadata-label'>{key}:</span> <span class='metadata-value'>{value}</span></div>" | |
html += "</div></div>" | |
return html | |
def load_models_from_json(directory): | |
models = {} | |
for filename in os.listdir(directory): | |
if filename.endswith('.json'): | |
with open(os.path.join(directory, filename), 'r') as file: | |
model_data = json.load(file) | |
model_name = model_data['metadata']['Name'] | |
models[model_name] = model_data | |
return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower())) | |
# Load templates and models | |
# scorecard_template = load_scorecard_templates('scorecard_templates') | |
models = load_models_from_json('model_data') | |
def create_source_html(sources): | |
if not sources: | |
return "" | |
html = "<div class='sources-list'>" | |
for source in sources: | |
icon = source.get("type", "") | |
detail = source.get("detail", "") | |
name = source.get("name", detail) | |
html += f"<div class='source-item'>{icon} " | |
if detail.startswith("http"): | |
html += f"<a href='{detail}' target='_blank'>{name}</a>" | |
else: | |
html += name | |
html += "</div>" | |
html += "</div>" | |
return html | |
def create_leaderboard(): | |
scores = [] | |
for model, data in models.items(): | |
total_score = 0 | |
total_questions = 0 | |
for category in data['scores'].values(): | |
for section in category.values(): | |
if section['status'] != 'N/A': | |
questions = section.get('questions', {}) | |
total_score += sum(1 for q in questions.values() if q) | |
total_questions += len(questions) | |
score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0 | |
scores.append((model, score_percentage)) | |
df = pd.DataFrame(scores, columns=['Model', 'Score Percentage']) | |
df = df.sort_values('Score Percentage', ascending=False).reset_index(drop=True) | |
html = "<div class='card leaderboard-card'>" | |
html += "<div class='card-title'>AI Model Social Impact Leaderboard</div>" | |
html += "<table class='leaderboard-table'>" | |
html += "<tr><th>Rank</th><th>Model</th><th>Score Percentage</th></tr>" | |
for i, (_, row) in enumerate(df.iterrows(), 1): | |
html += f"<tr><td>{i}</td><td>{row['Model']}</td><td>{row['Score Percentage']:.2f}%</td></tr>" | |
html += "</table></div>" | |
return html | |
def create_category_chart(selected_models, selected_categories): | |
if not selected_models: | |
return px.bar(title='Please select at least one model for comparison') | |
# Sort categories before processing | |
selected_categories = sort_categories(selected_categories) | |
data = [] | |
for model in selected_models: | |
for category in selected_categories: | |
if category in models[model]['scores']: | |
total_score = 0 | |
total_questions = 0 | |
for section in models[model]['scores'][category].values(): | |
if section['status'] != 'N/A': | |
questions = section.get('questions', {}) | |
total_score += sum(1 for q in questions.values() if q) | |
total_questions += len(questions) | |
score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0 | |
data.append({ | |
'Model': model, | |
'Category': category, | |
'Score Percentage': score_percentage | |
}) | |
df = pd.DataFrame(data) | |
if df.empty: | |
return px.bar(title='No data available for the selected models and categories') | |
fig = px.bar(df, x='Model', y='Score Percentage', color='Category', | |
title='AI Model Scores by Category', | |
labels={'Score Percentage': 'Score Percentage'}, | |
category_orders={"Category": selected_categories}) | |
return fig | |
def update_detailed_scorecard(model, selected_categories): | |
if not model: | |
return [ | |
gr.update(value="Please select a model to view details.", visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
] | |
selected_categories = sort_categories(selected_categories) | |
metadata_html = create_metadata_card(models[model]['metadata']) | |
overall_summary_html = create_overall_summary(models[model], selected_categories) | |
# Combine metadata and overall summary | |
combined_header = metadata_html + overall_summary_html | |
total_yes = 0 | |
total_no = 0 | |
total_na = 0 | |
has_non_na = False | |
# Create category cards | |
all_cards_content = "<div class='container'>" | |
for category_name in selected_categories: | |
if category_name in models[model]['scores']: | |
category_data = models[model]['scores'][category_name] | |
card_content = f"<div class='card'><div class='card-title'>{category_name}</div>" | |
# Add category-specific summary at the top of each card | |
card_content += create_category_summary(category_data) | |
# Sort sections within each category | |
sorted_sections = sorted(category_data.items(), | |
key=lambda x: float(re.match(r'^(\d+\.?\d*)', x[0]).group(1))) | |
category_yes = 0 | |
category_no = 0 | |
category_na = 0 | |
for section, details in sorted_sections: | |
status = details['status'] | |
if status != 'N/A': | |
has_non_na = True | |
sources = details.get('sources', []) | |
questions = details.get('questions', {}) | |
section_class = "section-na" if status == "N/A" else "section-active" | |
status_class = status.lower() | |
status_icon = "β" if status == "Yes" else "β" if status == "N/A" else "Γ" | |
card_content += f"<div class='section {section_class}'>" | |
card_content += f"<div class='section-header'><h3>{section}</h3>" | |
card_content += f"<span class='status-badge {status_class}'>{status_icon} {status}</span></div>" | |
if sources: | |
card_content += "<div class='sources-list'>" | |
for source in sources: | |
icon = source.get("type", "") | |
detail = source.get("detail", "") | |
name = source.get("name", detail) | |
card_content += f"<div class='source-item'>{icon} " | |
if detail.startswith("http"): | |
card_content += f"<a href='{detail}' target='_blank'>{name}</a>" | |
else: | |
card_content += name | |
card_content += "</div>" | |
card_content += "</div>" | |
if questions: | |
yes_count = sum(1 for v in questions.values() if v) | |
total_count = len(questions) | |
card_content += "<details class='question-accordion'>" | |
if status == "N/A": | |
card_content += f"<summary>View {total_count} N/A items</summary>" | |
else: | |
card_content += f"<summary>View details ({yes_count}/{total_count} completed)</summary>" | |
card_content += "<div class='questions'>" | |
for question, is_checked in questions.items(): | |
if status == "N/A": | |
style_class = "na" | |
icon = "β" | |
category_na += 1 | |
total_na += 1 | |
else: | |
if is_checked: | |
style_class = "checked" | |
icon = "β" | |
category_yes += 1 | |
total_yes += 1 | |
else: | |
style_class = "unchecked" | |
icon = "β" | |
category_no += 1 | |
total_no += 1 | |
card_content += f"<div class='question-item {style_class}'>{icon} {question}</div>" | |
card_content += "</div></details>" | |
card_content += "</div>" | |
if category_yes + category_no > 0: | |
category_score = category_yes / (category_yes + category_no) * 100 | |
card_content += f"<div class='category-score'>Completion Score Breakdown: {category_score:.2f}% Yes: {category_yes}, No: {category_no}, N/A: {category_na}</div>" | |
elif category_na > 0: | |
card_content += f"<div class='category-score'>Completion Score Breakdown: N/A (All {category_na} items not applicable)</div>" | |
card_content += "</div>" | |
all_cards_content += card_content | |
all_cards_content += "</div>" | |
# Create total score | |
if not has_non_na: | |
total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>" | |
elif total_yes + total_no > 0: | |
total_score = total_yes / (total_yes + total_no) * 100 | |
total_score_md = f"<div class='total-score'>Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})</div>" | |
else: | |
total_score_md = "<div class='total-score'>No applicable scores (all items N/A)</div>" | |
return [ | |
gr.update(value=combined_header, visible=True), | |
gr.update(value=all_cards_content, visible=True), | |
gr.update(value=total_score_md, visible=True) | |
] | |
css = """ | |
.container { | |
display: flex; | |
flex-wrap: wrap; | |
justify-content: space-between; | |
} | |
.container.svelte-1hfxrpf.svelte-1hfxrpf { | |
height: 0%; | |
} | |
.card { | |
width: calc(50% - 20px); | |
border: 1px solid #e0e0e0; | |
border-radius: 10px; | |
padding: 20px; | |
margin-bottom: 20px; | |
background-color: #ffffff; | |
box-shadow: 0 4px 6px rgba(0,0,0,0.1); | |
transition: all 0.3s ease; | |
} | |
.card:hover { | |
box-shadow: 0 6px 8px rgba(0,0,0,0.15); | |
transform: translateY(-5px); | |
} | |
.card-title { | |
font-size: 1.4em; | |
font-weight: bold; | |
margin-bottom: 15px; | |
color: #333; | |
border-bottom: 2px solid #e0e0e0; | |
padding-bottom: 10px; | |
} | |
.sources-list { | |
margin: 10px 0; | |
} | |
.source-item { | |
margin: 5px 0; | |
padding: 5px; | |
background-color: #f8f9fa; | |
border-radius: 4px; | |
} | |
.question-item { | |
margin: 5px 0; | |
padding: 8px; | |
border-radius: 4px; | |
} | |
.question-item.checked { | |
background-color: #e6ffe6; | |
} | |
.question-item.unchecked { | |
background-color: #ffe6e6; | |
} | |
.category-score, .total-score { | |
background-color: #f0f8ff; | |
border: 1px solid #b0d4ff; | |
border-radius: 5px; | |
padding: 10px; | |
margin-top: 15px; | |
font-weight: bold; | |
text-align: center; | |
} | |
.total-score { | |
font-size: 1.2em; | |
background-color: #e6f3ff; | |
border-color: #80bdff; | |
} | |
.leaderboard-card { | |
width: 100%; | |
max-width: 800px; | |
margin: 0 auto; | |
} | |
.leaderboard-table { | |
width: 100%; | |
border-collapse: collapse; | |
} | |
.leaderboard-table th, .leaderboard-table td { | |
padding: 10px; | |
text-align: left; | |
border-bottom: 1px solid #e0e0e0; | |
} | |
.leaderboard-table th { | |
background-color: #f2f2f2; | |
font-weight: bold; | |
} | |
.section { | |
margin-bottom: 20px; | |
padding: 15px; | |
border-radius: 5px; | |
background-color: #f8f9fa; | |
} | |
@media (max-width: 768px) { | |
.card { | |
width: 100%; | |
} | |
} | |
.dark { | |
background-color: #1a1a1a; | |
color: #e0e0e0; | |
.card { | |
background-color: #2a2a2a; | |
border-color: #444; | |
} | |
.card-title { | |
color: #fff; | |
border-bottom-color: #444; | |
} | |
.source-item { | |
background-color: #2a2a2a; | |
} | |
.question-item.checked { | |
background-color: #1a3a1a; | |
} | |
.question-item.unchecked { | |
background-color: #3a1a1a; | |
} | |
.section { | |
background-color: #2a2a2a; | |
} | |
.category-score, .total-score { | |
background-color: #2c3e50; | |
border-color: #34495e; | |
} | |
.leaderboard-table th { | |
background-color: #2c3e50; | |
} | |
} | |
.section-na { | |
opacity: 0.6; | |
} | |
.question-item.na { | |
background-color: #f0f0f0; | |
color: #666; | |
} | |
.dark .question-item.na { | |
background-color: #2d2d2d; | |
color: #999; | |
} | |
.section-header { | |
display: flex; | |
justify-content: space-between; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
.status-badge { | |
font-size: 0.9em; | |
padding: 4px 8px; | |
border-radius: 12px; | |
font-weight: 500; | |
} | |
.status-badge.yes { | |
background-color: #e6ffe6; | |
color: #006600; | |
} | |
.status-badge.no { | |
background-color: #ffe6e6; | |
color: #990000; | |
} | |
.status-badge.n\/a { | |
background-color: #f0f0f0; | |
color: #666666; | |
} | |
.question-accordion { | |
margin-top: 10px; | |
} | |
.question-accordion summary { | |
cursor: pointer; | |
padding: 8px; | |
background-color: #f8f9fa; | |
border-radius: 4px; | |
margin-bottom: 10px; | |
font-weight: 500; | |
} | |
.question-accordion summary:hover { | |
background-color: #e9ecef; | |
} | |
.dark .status-badge.yes { | |
background-color: #1a3a1a; | |
color: #90EE90; | |
} | |
.dark .status-badge.no { | |
background-color: #3a1a1a; | |
color: #FFB6B6; | |
} | |
.dark .status-badge.n\/a { | |
background-color: #2d2d2d; | |
color: #999999; | |
} | |
.dark .question-accordion summary { | |
background-color: #2a2a2a; | |
} | |
.dark .question-accordion summary:hover { | |
background-color: #333333; | |
} | |
.metadata-card { | |
margin-bottom: 30px; | |
width: 100% !important; | |
} | |
.metadata-content { | |
display: flex; | |
flex-direction: column; | |
gap: 12px; | |
} | |
.metadata-row { | |
display: flex; | |
align-items: flex-start; | |
gap: 10px; | |
line-height: 1.5; | |
} | |
.metadata-label { | |
font-weight: 600; | |
min-width: 100px; | |
color: #555; | |
} | |
.metadata-value { | |
color: #333; | |
} | |
.metadata-link { | |
color: #007bff; | |
text-decoration: none; | |
} | |
.metadata-link:hover { | |
text-decoration: underline; | |
} | |
.modality-container { | |
display: flex; | |
flex-wrap: wrap; | |
gap: 8px; | |
} | |
.modality-badge { | |
display: inline-flex; | |
align-items: center; | |
gap: 4px; | |
padding: 4px 10px; | |
background-color: #f0f7ff; | |
border: 1px solid #cce3ff; | |
border-radius: 15px; | |
font-size: 0.9em; | |
color: #0066cc; | |
} | |
.dark .metadata-label { | |
color: #aaa; | |
} | |
.dark .metadata-value { | |
color: #ddd; | |
} | |
.dark .metadata-link { | |
color: #66b3ff; | |
} | |
.dark .modality-badge { | |
background-color: #1a2733; | |
border-color: #2c3e50; | |
color: #99ccff; | |
} | |
.summary-card { | |
background-color: #f8f9fa; | |
border: 1px solid #e0e0e0; | |
border-radius: 8px; | |
padding: 16px; | |
margin-bottom: 20px; | |
} | |
.summary-title { | |
font-size: 1.2em; | |
font-weight: bold; | |
margin-bottom: 12px; | |
color: #333; | |
} | |
.summary-section { | |
margin-bottom: 16px; | |
} | |
.summary-subtitle { | |
font-size: 1em; | |
font-weight: 600; | |
color: #555; | |
margin-bottom: 8px; | |
} | |
.metric-row { | |
display: flex; | |
justify-content: space-between; | |
align-items: center; | |
margin-bottom: 4px; | |
} | |
.metric-label { | |
color: #666; | |
} | |
.metric-value { | |
font-weight: 600; | |
color: #333; | |
} | |
.coverage-grid { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); | |
gap: 8px; | |
margin-top: 8px; | |
} | |
.coverage-item { | |
padding: 8px; | |
border-radius: 6px; | |
text-align: center; | |
font-size: 0.9em; | |
} | |
.coverage-item.covered { | |
background-color: #e6ffe6; | |
color: #006600; | |
border: 1px solid #b3ffb3; | |
} | |
.coverage-item.not-covered { | |
background-color: #f5f5f5; | |
color: #666; | |
border: 1px solid #ddd; | |
} | |
.status-pills { | |
display: flex; | |
gap: 8px; | |
flex-wrap: wrap; | |
} | |
.status-pill { | |
padding: 4px 12px; | |
border-radius: 16px; | |
font-size: 0.9em; | |
font-weight: 500; | |
} | |
.status-pill.yes { | |
background-color: #e6ffe6; | |
color: #006600; | |
border: 1px solid #b3ffb3; | |
} | |
.status-pill.no { | |
background-color: #ffe6e6; | |
color: #990000; | |
border: 1px solid #ffb3b3; | |
} | |
.status-pill.n\\/a { | |
background-color: #f5f5f5; | |
color: #666; | |
border: 1px solid #ddd; | |
} | |
.dark .summary-card { | |
background-color: #2a2a2a; | |
border-color: #444; | |
} | |
.dark .summary-title, | |
.dark .summary-subtitle { | |
color: #e0e0e0; | |
} | |
.dark .metric-label { | |
color: #999; | |
} | |
.dark .metric-value { | |
color: #fff; | |
} | |
.dark .coverage-item.covered { | |
background-color: #1a3a1a; | |
color: #90EE90; | |
border-color: #2d5a2d; | |
} | |
.dark .coverage-item.not-covered { | |
background-color: #333; | |
color: #999; | |
border-color: #444; | |
} | |
.dark .status-pill.yes { | |
background-color: #1a3a1a; | |
color: #90EE90; | |
border-color: #2d5a2d; | |
} | |
.dark .status-pill.no { | |
background-color: #3a1a1a; | |
color: #FFB6B6; | |
border-color: #5a2d2d; | |
} | |
.dark .status-pill.n\\/a { | |
background-color: #333; | |
color: #999; | |
border-color: #444; | |
} | |
.overall-summary-card { | |
width: 100% !important; | |
margin-bottom: 30px; | |
} | |
.summary-grid { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); | |
gap: 20px; | |
margin-bottom: 20px; | |
} | |
.category-completion-grid { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); | |
gap: 16px; | |
margin-top: 12px; | |
} | |
.category-completion-item { | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
padding: 12px; | |
} | |
.category-name { | |
font-size: 0.9em; | |
font-weight: 500; | |
margin-bottom: 8px; | |
color: #555; | |
} | |
.completion-bar-container { | |
height: 24px; | |
background-color: #eee; | |
border-radius: 12px; | |
position: relative; | |
overflow: hidden; | |
} | |
.completion-bar { | |
height: 100%; | |
background-color: #4CAF50; | |
transition: width 0.3s ease; | |
} | |
.completion-text { | |
position: absolute; | |
right: 8px; | |
top: 50%; | |
transform: translateY(-50%); | |
font-size: 0.8em; | |
font-weight: 600; | |
color: #333; | |
} | |
.dark .category-completion-item { | |
background-color: #2a2a2a; | |
} | |
.dark .category-name { | |
color: #ccc; | |
} | |
.dark .completion-bar-container { | |
background-color: #333; | |
} | |
.dark .completion-bar { | |
background-color: #2e7d32; | |
} | |
.dark .completion-text { | |
color: #fff; | |
} | |
.completion-bar-container.not-selected { | |
opacity: 0.5; | |
background-color: #f0f0f0; | |
} | |
.completion-bar-container.na { | |
background-color: #f0f0f0; | |
} | |
.completion-bar-container.na .completion-bar { | |
background-color: #999; | |
width: 0 !important; /* Ensure no bar shows for N/A */ | |
} | |
.dark .completion-bar-container.na { | |
background-color: #2d2d2d; | |
} | |
.dark .completion-bar-container.na .completion-bar { | |
background-color: #666; | |
} | |
.category-completion-item { | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
padding: 12px; | |
height: 80px; | |
display: grid; | |
grid-template-rows: 1fr auto; | |
gap: 8px; | |
} | |
.category-name { | |
font-size: 0.9em; | |
font-weight: 500; | |
color: #555; | |
align-self: start; | |
line-height: 1.3; | |
} | |
.completion-bar-container { | |
height: 24px; | |
background-color: #eee; | |
border-radius: 12px; | |
position: relative; | |
overflow: hidden; | |
align-self: end; | |
} | |
""" | |
first_model = next(iter(models.values())) | |
category_choices = list(first_model['scores'].keys()) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# AI Model Social Impact Scorecard Dashboard") | |
with gr.Row(): | |
tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"], | |
label="Select Tab", value="Leaderboard") | |
with gr.Row(): | |
model_chooser = gr.Dropdown(choices=[""] + list(models.keys()), | |
label="Select Model for Details", | |
value="", | |
interactive=True, visible=False) | |
model_multi_chooser = gr.Dropdown(choices=list(models.keys()), | |
label="Select Models for Comparison", | |
multiselect=True, interactive=True, visible=False) | |
category_filter = gr.CheckboxGroup(choices=category_choices, | |
label="Filter Categories", | |
value=category_choices, | |
visible=False) | |
with gr.Column(visible=True) as leaderboard_tab: | |
leaderboard_output = gr.HTML() | |
with gr.Column(visible=False) as category_analysis_tab: | |
category_chart = gr.Plot() | |
with gr.Column(visible=False) as detailed_scorecard_tab: | |
model_metadata = gr.HTML() | |
all_category_cards = gr.HTML() | |
total_score = gr.Markdown() | |
# Initialize the dashboard with the leaderboard | |
leaderboard_output.value = create_leaderboard() | |
def update_dashboard(tab, selected_models, selected_model, selected_categories): | |
leaderboard_visibility = gr.update(visible=False) | |
category_chart_visibility = gr.update(visible=False) | |
detailed_scorecard_visibility = gr.update(visible=False) | |
model_chooser_visibility = gr.update(visible=False) | |
model_multi_chooser_visibility = gr.update(visible=False) | |
category_filter_visibility = gr.update(visible=False) | |
if tab == "Leaderboard": | |
leaderboard_visibility = gr.update(visible=True) | |
leaderboard_html = create_leaderboard() | |
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, | |
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, | |
gr.update(value=leaderboard_html), gr.update(), gr.update(), gr.update(), gr.update()] | |
elif tab == "Category Analysis": | |
category_chart_visibility = gr.update(visible=True) | |
model_multi_chooser_visibility = gr.update(visible=True) | |
category_filter_visibility = gr.update(visible=True) | |
category_plot = create_category_chart(selected_models or [], selected_categories) | |
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, | |
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, | |
gr.update(), gr.update(value=category_plot), gr.update(), gr.update(), gr.update()] | |
elif tab == "Detailed Scorecard": | |
detailed_scorecard_visibility = gr.update(visible=True) | |
model_chooser_visibility = gr.update(visible=True) | |
category_filter_visibility = gr.update(visible=True) | |
if selected_model: | |
scorecard_updates = update_detailed_scorecard(selected_model, selected_categories) | |
else: | |
scorecard_updates = [ | |
gr.update(value="Please select a model to view details.", visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
] | |
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, | |
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, | |
gr.update(), gr.update()] + scorecard_updates | |
# Set up event handlers | |
tab_selection.change( | |
fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, | |
all_category_cards, total_score] | |
) | |
model_chooser.change( | |
fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, | |
all_category_cards, total_score] | |
) | |
model_multi_chooser.change( | |
fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, | |
all_category_cards, total_score] | |
) | |
category_filter.change( | |
fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, | |
all_category_cards, total_score] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |