Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
from dataclasses import dataclass, field | |
from typing import List, Dict, Tuple, Union | |
import json | |
import os | |
from collections import OrderedDict | |
class ScorecardCategory: | |
name: str | |
questions: List[Dict[str, Union[str, List[str]]]] | |
scores: Dict[str, int] = field(default_factory=dict) | |
def load_scorecard_templates(directory): | |
templates = [] | |
for filename in os.listdir(directory): | |
if filename.endswith('.json'): | |
with open(os.path.join(directory, filename), 'r') as file: | |
data = json.load(file) | |
templates.append(ScorecardCategory( | |
name=data['name'], | |
questions=data['questions'] | |
)) | |
return templates | |
# Load scorecard templates | |
scorecard_template = load_scorecard_templates('scorecard_templates') | |
# Function to read JSON files and populate models dictionary | |
def load_models_from_json(directory): | |
models = {} | |
for filename in os.listdir(directory): | |
if filename.endswith('.json'): | |
with open(os.path.join(directory, filename), 'r') as file: | |
model_data = json.load(file) | |
model_name = model_data['metadata']['Name'] | |
models[model_name] = model_data | |
# Sort the models alphabetically by name | |
return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower())) | |
# Load models from JSON files | |
models = load_models_from_json('model_data') | |
css = """ | |
.container { | |
display: flex; | |
flex-wrap: wrap; | |
justify-content: space-between; | |
} | |
.container.svelte-1hfxrpf.svelte-1hfxrpf { | |
height: 0%; | |
} | |
.card { | |
width: calc(50% - 20px); | |
border: 1px solid #e0e0e0; | |
border-radius: 10px; | |
padding: 20px; | |
margin-bottom: 20px; | |
background-color: #ffffff; | |
box-shadow: 0 4px 6px rgba(0,0,0,0.1); | |
transition: all 0.3s ease; | |
} | |
.card:hover { | |
box-shadow: 0 6px 8px rgba(0,0,0,0.15); | |
transform: translateY(-5px); | |
} | |
.card-title { | |
font-size: 1.4em; | |
font-weight: bold; | |
margin-bottom: 15px; | |
color: #333; | |
border-bottom: 2px solid #e0e0e0; | |
padding-bottom: 10px; | |
} | |
.question { | |
margin-bottom: 20px; | |
padding: 15px; | |
border-radius: 5px; | |
} | |
.question h3 { | |
margin-top: 0; | |
color: #2c3e50; | |
} | |
.question-yes { | |
background-color: #e6ffe6; | |
} | |
.question-no { | |
background-color: #ffe6e6; | |
} | |
.question-na { | |
background-color: #fffde6; | |
} | |
.status { | |
font-weight: bold; | |
} | |
details { | |
margin-top: 10px; | |
} | |
summary { | |
cursor: pointer; | |
color: #3498db; | |
font-weight: bold; | |
} | |
summary:hover { | |
text-decoration: underline; | |
} | |
.category-score, .total-score { | |
background-color: #f0f8ff; | |
border: 1px solid #b0d4ff; | |
border-radius: 5px; | |
padding: 10px; | |
margin-top: 15px; | |
font-weight: bold; | |
text-align: center; | |
} | |
.total-score { | |
font-size: 1.2em; | |
background-color: #e6f3ff; | |
border-color: #80bdff; | |
} | |
.leaderboard-card { | |
width: 100%; | |
max-width: 800px; | |
margin: 0 auto; | |
} | |
.leaderboard-table { | |
width: 100%; | |
border-collapse: collapse; | |
} | |
.leaderboard-table th, .leaderboard-table td { | |
padding: 10px; | |
text-align: left; | |
border-bottom: 1px solid #e0e0e0; | |
} | |
.leaderboard-table th { | |
background-color: #f2f2f2; | |
font-weight: bold; | |
} | |
.leaderboard-table tr:last-child td { | |
border-bottom: none; | |
} | |
@media (max-width: 768px) { | |
.card { | |
width: 100%; | |
} | |
} | |
.dark { | |
/* General styles */ | |
background-color: #1a1a1a; | |
color: #e0e0e0; | |
/* Card styles */ | |
.card { | |
background-color: #2a2a2a; | |
border-color: #444; | |
box-shadow: 0 4px 6px rgba(0,0,0,0.3); | |
} | |
.card:hover { | |
box-shadow: 0 6px 8px rgba(0,0,0,0.4); | |
} | |
.card-title { | |
color: #fff; | |
border-bottom-color: #444; | |
} | |
/* Question styles */ | |
.question { | |
background-color: #333; | |
} | |
.question h3 { | |
color: #e0e0e0; | |
} | |
.question-yes { | |
background-color: #1a3a1a; | |
} | |
.question-no { | |
background-color: #3a1a1a; | |
} | |
.question-na { | |
background-color: #3a3a1a; | |
} | |
/* Summary and details styles */ | |
summary { | |
color: #3498db; | |
} | |
details { | |
background-color: #2a2a2a; | |
} | |
/* Score styles */ | |
.category-score, .total-score { | |
background-color: #2c3e50; | |
border-color: #34495e; | |
} | |
.total-score { | |
background-color: #34495e; | |
border-color: #2c3e50; | |
} | |
/* Leaderboard styles */ | |
.leaderboard-table th { | |
background-color: #2c3e50; | |
color: #fff; | |
} | |
.leaderboard-table td { | |
border-bottom-color: #444; | |
} | |
/* Gradio component styles */ | |
.gradio-container { | |
background-color: #1a1a1a; | |
} | |
.input-group, .output-group { | |
background-color: #2a2a2a; | |
} | |
input, select, textarea { | |
background-color: #333; | |
color: #e0e0e0; | |
border-color: #444; | |
} | |
button { | |
background-color: #3498db; | |
color: #fff; | |
} | |
button:hover { | |
background-color: #2980b9; | |
} | |
} | |
""" | |
def create_leaderboard(): | |
scores = [] | |
for model, data in models.items(): | |
total_score = 0 | |
total_questions = 0 | |
for category in data['scores']: | |
for question, details in data['scores'][category].items(): | |
if details['status'] == 'Yes': | |
total_score += 1 | |
total_questions += 1 | |
score_percentage = (total_score / total_questions) * 100 if total_questions > 0 else 0 | |
scores.append((model, score_percentage)) | |
df = pd.DataFrame(scores, columns=['Model', 'Score Percentage']) | |
df = df.sort_values('Score Percentage', ascending=False).reset_index(drop=True) | |
html = "<div class='card leaderboard-card'>" | |
html += "<div class='card-title'>AI Model Social Impact Leaderboard</div>" | |
html += "<table class='leaderboard-table'>" | |
html += "<tr><th>Rank</th><th>Model</th><th>Score Percentage</th></tr>" | |
for i, (_, row) in enumerate(df.iterrows(), 1): | |
html += f"<tr><td>{i}</td><td>{row['Model']}</td><td>{row['Score Percentage']:.2f}%</td></tr>" | |
html += "</table></div>" | |
return html | |
def create_category_chart(selected_models, selected_categories): | |
if not selected_models: | |
return px.bar(title='Please select at least one model for comparison') | |
data = [] | |
for model in selected_models: | |
for category in selected_categories: | |
if category in models[model]['scores']: | |
total_questions = len(models[model]['scores'][category]) | |
yes_count = sum(1 for q in models[model]['scores'][category].values() if q['status'] == 'Yes') | |
score_percentage = (yes_count / total_questions) * 100 if total_questions > 0 else 0 | |
data.append({'Model': model, 'Category': category, 'Score Percentage': score_percentage}) | |
df = pd.DataFrame(data) | |
if df.empty: | |
return px.bar(title='No data available for the selected models and categories') | |
fig = px.bar(df, x='Model', y='Score Percentage', color='Category', | |
title='AI Model Scores by Category', | |
labels={'Score Percentage': 'Score Percentage'}, | |
category_orders={"Category": selected_categories}) | |
return fig | |
def update_detailed_scorecard(model, selected_categories): | |
if not model: # Check if model is None or an empty string | |
return [ | |
gr.update(value="Please select a model to view details.", visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
] | |
metadata_md = f"## Model Metadata for {model}\n\n" | |
for key, value in models[model]['metadata'].items(): | |
metadata_md += f"**{key}:** {value}\n\n" | |
total_yes = 0 | |
total_no = 0 | |
total_na = 0 | |
all_cards_content = "<div class='container'>" | |
for category in scorecard_template: | |
if category.name in selected_categories and category.name in models[model]['scores']: | |
category_data = models[model]['scores'][category.name] | |
card_content = f"<div class='card'><div class='card-title'>{category.name}</div>" | |
category_yes = 0 | |
category_no = 0 | |
category_na = 0 | |
for question, details in category_data.items(): | |
status = details['status'] | |
source = details.get('source', 'N/A') | |
if status == 'Yes': | |
bg_class = 'question-yes' | |
category_yes += 1 | |
total_yes += 1 | |
elif status == 'No': | |
bg_class = 'question-no' | |
category_no += 1 | |
total_no += 1 | |
else: | |
bg_class = 'question-na' | |
category_na += 1 | |
total_na += 1 | |
card_content += f"<div class='question {bg_class}'>" | |
card_content += f"<h3>{question}</h3>\n\n" | |
card_content += f"<p><span class='status'>{status}</span></p>\n\n<p><strong>Source:</strong> {source}</p>\n\n" | |
if details.get('applicable_evaluations'): | |
card_content += "<details><summary>View Applicable Evaluations</summary>\n\n" | |
card_content += "<ul>" | |
for eval in details['applicable_evaluations']: | |
card_content += f"<li>{eval}</li>" | |
card_content += "</ul>\n" | |
card_content += "</details>\n\n" | |
else: | |
card_content += "<details><summary>View Applicable Evaluations</summary>\n\n" | |
card_content += "<p>No applicable evaluations.</p>\n" | |
card_content += "</details>\n\n" | |
card_content += "</div>" | |
category_score = category_yes / (category_yes + category_no) * 100 if (category_yes + category_no) > 0 else 0 | |
card_content += f"<div class='category-score'>Category Score: {category_score:.2f}% (Yes: {category_yes}, No: {category_no}, N/A: {category_na})</div>" | |
card_content += "</div>" | |
all_cards_content += card_content | |
all_cards_content += "</div>" | |
total_score = total_yes / (total_yes + total_no) * 100 if (total_yes + total_no) > 0 else 0 | |
total_score_md = f"<div class='total-score'>Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})</div>" | |
return [ | |
gr.update(value=metadata_md, visible=True), | |
gr.update(value=all_cards_content, visible=True), | |
gr.update(value=total_score_md, visible=True) | |
] | |
def update_dashboard(tab, selected_models, selected_model, selected_categories): | |
leaderboard_visibility = gr.update(visible=False) | |
category_chart_visibility = gr.update(visible=False) | |
detailed_scorecard_visibility = gr.update(visible=False) | |
model_chooser_visibility = gr.update(visible=False) | |
model_multi_chooser_visibility = gr.update(visible=False) | |
category_filter_visibility = gr.update(visible=False) | |
if tab == "Leaderboard": | |
leaderboard_visibility = gr.update(visible=True) | |
leaderboard_html = create_leaderboard() | |
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, | |
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, | |
gr.update(value=leaderboard_html), gr.update(), gr.update(), gr.update(), gr.update()] | |
elif tab == "Category Analysis": | |
category_chart_visibility = gr.update(visible=True) | |
model_multi_chooser_visibility = gr.update(visible=True) | |
category_filter_visibility = gr.update(visible=True) | |
category_chart = create_category_chart(selected_models or [], selected_categories) | |
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, | |
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, | |
gr.update(), gr.update(value=category_chart), gr.update(), gr.update(), gr.update()] | |
elif tab == "Detailed Scorecard": | |
detailed_scorecard_visibility = gr.update(visible=True) | |
model_chooser_visibility = gr.update(visible=True) | |
category_filter_visibility = gr.update(visible=True) | |
if selected_model: | |
scorecard_updates = update_detailed_scorecard(selected_model, selected_categories) | |
else: | |
scorecard_updates = [ | |
gr.update(value="Please select a model to view details.", visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
] | |
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, | |
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, | |
gr.update(), gr.update()] + scorecard_updates | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# AI Model Social Impact Scorecard Dashboard") | |
with gr.Row(): | |
tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"], | |
label="Select Tab", value="Leaderboard") | |
with gr.Row(): | |
model_chooser = gr.Dropdown(choices=[""] + list(models.keys()), # Add an empty option | |
label="Select Model for Details", | |
value="", # Set default value to empty string | |
interactive=True, visible=False) | |
model_multi_chooser = gr.Dropdown(choices=list(models.keys()), | |
label="Select Models for Comparison", | |
multiselect=True, interactive=True, visible=False) | |
category_filter = gr.CheckboxGroup(choices=[cat.name for cat in scorecard_template], | |
label="Filter Categories", | |
value=[cat.name for cat in scorecard_template], | |
visible=False) | |
with gr.Column(visible=True) as leaderboard_tab: | |
leaderboard_output = gr.HTML() | |
with gr.Column(visible=False) as category_analysis_tab: | |
category_chart = gr.Plot() | |
with gr.Column(visible=False) as detailed_scorecard_tab: | |
model_metadata = gr.Markdown() | |
all_category_cards = gr.HTML() | |
total_score = gr.Markdown() | |
# Initialize the dashboard with the leaderboard | |
leaderboard_output.value = create_leaderboard() | |
tab_selection.change(fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score]) | |
model_chooser.change(fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score]) | |
model_multi_chooser.change(fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score]) | |
category_filter.change(fn=update_dashboard, | |
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], | |
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, | |
model_chooser, model_multi_chooser, category_filter, | |
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score]) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |