File size: 5,860 Bytes
a9eafd0
 
 
 
6d41343
a9eafd0
 
6d41343
 
a9eafd0
 
 
 
 
6d41343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9eafd0
 
 
 
6d41343
 
 
 
a9eafd0
 
 
 
 
 
 
6d41343
a9eafd0
 
 
 
6d41343
 
a9eafd0
 
 
 
 
 
 
 
 
 
6d41343
a9eafd0
 
 
 
6d41343
 
 
a9eafd0
6d41343
a9eafd0
 
 
 
6d41343
a9eafd0
 
 
 
6d41343
 
 
 
 
a9eafd0
 
 
 
 
 
 
6d41343
a9eafd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d41343
 
 
a9eafd0
 
6d41343
 
 
a9eafd0
 
 
 
 
 
 
 
 
 
 
6d41343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9eafd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "fb0b148e",
   "metadata": {},
   "source": [
    "# This notebook is the .ipynb file for the model. \n",
    "The code has been commmented in order to explain various parts, including the unused commented out parts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e39e2ed1",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|default_exp app"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d671a893",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The various ~| comments are needed to turn this into a .py file\n",
    "# The export comments specify to export said cell"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "435a6f23",
   "metadata": {},
   "outputs": [],
   "source": [
    "# On my computer, I use Anaconda, where these packages are already installed, so there is no need to install them on the notebook\n",
    "# On HuggingFaceSpaces, these packages have been put into requirements.txt so that the website installs them\n",
    "# Therefore there is no need to install them \n",
    "\n",
    "#%pip install -q gradio\n",
    "#%pip install fastbook\n",
    "#%pip install -Uqq fastai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a89a7628",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "# Importing neccesary modules\n",
    "import fastbook\n",
    "fastbook.setup_book()\n",
    "from fastbook import *\n",
    "from fastai.vision.widgets import *\n",
    "from fastai.vision.all import *\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "8c95d6bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# There was an error with the module Pillow, it was not updated and I attempted to update it within the notebook\n",
    "# This was not neccesary as I updated Pillow on my anaconda app and it fixed it.\n",
    "\n",
    "#!pip uninstall Pillow\n",
    "#!pip install Pillow"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "fe4889a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# There was an error the first time I ran this code on the notebook: \"NotImplementedError: cannot instantiate 'PosixPath' on your system\"\n",
    "# this code fixed it, but as it is suited for windows,\n",
    "# this causes an error on HuggingSpaceFaces, which likely uses linux. \n",
    "# Strangely, simply commenting this code out does not cause the initial error on HuggingFaceSpaces and works for it\n",
    "\n",
    "import pathlib\n",
    "temp = pathlib.PosixPath\n",
    "pathlib.PosixPath = pathlib.WindowsPath"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1d0d596",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Adnan\\anaconda3\\lib\\site-packages\\gradio\\inputs.py:256: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
      "  warnings.warn(\n",
      "C:\\Users\\Adnan\\anaconda3\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
      "  warnings.warn(value)\n",
      "C:\\Users\\Adnan\\anaconda3\\lib\\site-packages\\gradio\\outputs.py:196: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
      "  warnings.warn(\n",
      "C:\\Users\\Adnan\\anaconda3\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: The 'type' parameter has been deprecated. Use the Number component instead.\n",
      "  warnings.warn(value)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    }
   ],
   "source": [
    "#|export\n",
    "learn_inf = load_learner('NovaOrToastModel.pkl') # Loading the model\n",
    "learn_inf.dls.vocab # Returns a list of the categories\n",
    "categories = learn_inf.dls.vocab\n",
    "\n",
    "# Gradio code:\n",
    "\n",
    "# Function for Gradio to use to classify images\n",
    "def classify_image(img):\n",
    "    pred, idx, probs = learn_inf.predict(img)\n",
    "    return dict(zip(categories, map(float,probs)))\n",
    "\n",
    "image = gr.inputs.Image(shape=(192,192)) \n",
    "label = gr.outputs.Label()\n",
    "examples = [\"ToastTest.jpeg\"]\n",
    "\n",
    "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
    "intf.launch(inline=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "300585db",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Notebook2script simply turns the specified cells into a .py file for usage in HuggingFaceSpaces\n",
    "from nbdev.export import notebook2script\n",
    "\n",
    "# There were many problems getting notebook2script to work\n",
    "# The fix was to add a text document into the folder called 'settings.ini', for which I used the author's standard settings\n",
    "# which works\n",
    "\n",
    "notebook2script('NovaOrToast.ipynb')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}