fabiochiu's picture
Upload app.py
c43bc67
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
import math
import torch
model_name = "fabiochiu/t5-base-medium-title-generation"
max_input_length = 512
st.header("Generate candidate titles for articles")
st_model_load = st.text('Loading title generator model...')
@st.cache(allow_output_mutation=True)
def load_model():
print("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
nltk.download('punkt')
print("Model loaded!")
return tokenizer, model
tokenizer, model = load_model()
st.success('Model loaded!')
st_model_load.text("")
with st.sidebar:
st.header("Model parameters")
if 'num_titles' not in st.session_state:
st.session_state.num_titles = 5
def on_change_num_titles():
st.session_state.num_titles = num_titles
num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles)
if 'temperature' not in st.session_state:
st.session_state.temperature = 0.7
def on_change_temperatures():
st.session_state.temperature = temperature
temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures)
st.markdown("_High temperature means that results are more random_")
if 'text' not in st.session_state:
st.session_state.text = ""
st_text_area = st.text_area('Text to generate the title for', value=st.session_state.text, height=500)
def generate_title():
st.session_state.text = st_text_area
# tokenize text
inputs = ["summarize: " + st_text_area]
inputs = tokenizer(inputs, return_tensors="pt")
# compute span boundaries
num_tokens = len(inputs["input_ids"][0])
print(f"Input has {num_tokens} tokens")
max_input_length = 500
num_spans = math.ceil(num_tokens / max_input_length)
print(f"Input has {num_spans} spans")
overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1))
spans_boundaries = []
start = 0
for i in range(num_spans):
spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)])
start -= overlap
print(f"Span boundaries are {spans_boundaries}")
spans_boundaries_selected = []
j = 0
for _ in range(num_titles):
spans_boundaries_selected.append(spans_boundaries[j])
j += 1
if j == len(spans_boundaries):
j = 0
print(f"Selected span boundaries are {spans_boundaries_selected}")
# transform input with spans
tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
inputs = {
"input_ids": torch.stack(tensor_ids),
"attention_mask": torch.stack(tensor_masks)
}
# compute predictions
outputs = model.generate(**inputs, do_sample=True, temperature=temperature)
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
predicted_titles = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
st.session_state.titles = predicted_titles
# generate title button
st_generate_button = st.button('Generate title', on_click=generate_title)
# title generation labels
if 'titles' not in st.session_state:
st.session_state.titles = []
if len(st.session_state.titles) > 0:
with st.container():
st.subheader("Generated titles")
for title in st.session_state.titles:
st.markdown("__" + title + "__")