Spaces:
Running
Running
Fabio Grasso
commited on
feat: add link to colab in about and readme (#4)
Browse files- README.md +3 -2
- app/pages/About.py +10 -3
README.md
CHANGED
@@ -16,8 +16,7 @@ pinned: true
|
|
16 |
<h2 align="center">Moseca</h1>
|
17 |
<p align="center">Music Source Separation & Karaoke</p>
|
18 |
|
19 |
-
|
20 |
-
</a>
|
21 |
<a href="https://huggingface.co/spaces/fabiogra/moseca">
|
22 |
<img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue"
|
23 |
alt="Hugging Face Spaces"></a>
|
@@ -159,6 +158,8 @@ alt="Hugging Face Spaces"></a> or locally with
|
|
159 |
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
160 |
in just one click.
|
161 |
|
|
|
|
|
162 |
<br>
|
163 |
|
164 |
### Open-Source and Free
|
|
|
16 |
<h2 align="center">Moseca</h1>
|
17 |
<p align="center">Music Source Separation & Karaoke</p>
|
18 |
|
19 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ODoK3VXajprNbskqy7G8P1h-Zom92TMA?usp=sharing)
|
|
|
20 |
<a href="https://huggingface.co/spaces/fabiogra/moseca">
|
21 |
<img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue"
|
22 |
alt="Hugging Face Spaces"></a>
|
|
|
158 |
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
159 |
in just one click.
|
160 |
|
161 |
+
You can also speed up the music separation process by [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ODoK3VXajprNbskqy7G8P1h-Zom92TMA?usp=sharing) with GPU support.
|
162 |
+
|
163 |
<br>
|
164 |
|
165 |
### Open-Source and Free
|
app/pages/About.py
CHANGED
@@ -65,7 +65,11 @@ def body():
|
|
65 |
<img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue"
|
66 |
alt="Hugging Face Spaces"></a> or locally with </font>
|
67 |
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
68 |
-
<font size="3"> in just one click.
|
|
|
|
|
|
|
|
|
69 |
|
70 |
<br>
|
71 |
|
@@ -99,10 +103,13 @@ def body():
|
|
99 |
### Are there any limitations?
|
100 |
<font size="3">Yes, in this environment there are some limitations regarding lenght processing
|
101 |
and CPU usage to allow a smooth experience for all users.
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
environment like in the <a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue" alt="Hugging Face Spaces"></a> or locally with [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)</b>
|
105 |
</font>
|
|
|
|
|
106 |
### How does Moseca work?
|
107 |
<font size="3"> Moseca utilizes the Hybrid Spectrogram and Waveform Source Separation ([DEMUCS](https://github.com/facebookresearch/demucs)) model from Facebook. For fast karaoke vocal removal, Moseca uses the AI vocal remover developed by [tsurumeso](https://github.com/tsurumeso/vocal-remover).
|
108 |
</font>
|
|
|
65 |
<img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue"
|
66 |
alt="Hugging Face Spaces"></a> or locally with </font>
|
67 |
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
68 |
+
<font size="3"> in just one click.
|
69 |
+
|
70 |
+
Speed up the music separation process with ready-to-use
|
71 |
+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ODoK3VXajprNbskqy7G8P1h-Zom92TMA?usp=sharing)
|
72 |
+
with GPU support.</font>
|
73 |
|
74 |
<br>
|
75 |
|
|
|
103 |
### Are there any limitations?
|
104 |
<font size="3">Yes, in this environment there are some limitations regarding lenght processing
|
105 |
and CPU usage to allow a smooth experience for all users.
|
106 |
+
<b>If you want to remove these limitations you can deploy a Moseca app in your personal
|
107 |
+
environment like in the <a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue" alt="Hugging Face Spaces"></a> or locally with [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
108 |
|
109 |
+
You can also speed up the music separation process by [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ODoK3VXajprNbskqy7G8P1h-Zom92TMA?usp=sharing) with GPU support.</b>
|
|
|
110 |
</font>
|
111 |
+
|
112 |
+
|
113 |
### How does Moseca work?
|
114 |
<font size="3"> Moseca utilizes the Hybrid Spectrogram and Waveform Source Separation ([DEMUCS](https://github.com/facebookresearch/demucs)) model from Facebook. For fast karaoke vocal removal, Moseca uses the AI vocal remover developed by [tsurumeso](https://github.com/tsurumeso/vocal-remover).
|
115 |
</font>
|