Spaces:
Running
Running
fabiogra
commited on
Commit
·
b0a9f8f
1
Parent(s):
2e3ca25
feat: add separate examples, logs and improvements
Browse files- app/helpers.py +10 -17
- app/pages/Separate.py +117 -58
- app/style.py +6 -0
- requirements.in +1 -0
- requirements.txt +7 -5
- scripts/inference.py +23 -2
- scripts/prepare_samples.sh +18 -0
- scripts/separate_songs.json +8 -0
app/helpers.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import json
|
2 |
-
import logging
|
3 |
import os
|
4 |
import random
|
5 |
from base64 import b64encode
|
@@ -8,7 +7,6 @@ from pathlib import Path
|
|
8 |
|
9 |
import matplotlib.pyplot as plt
|
10 |
import numpy as np
|
11 |
-
import requests
|
12 |
import streamlit as st
|
13 |
from PIL import Image
|
14 |
from pydub import AudioSegment
|
@@ -20,7 +18,7 @@ extensions = ["mp3", "wav", "ogg", "flac"] # we will look for all those file ty
|
|
20 |
|
21 |
|
22 |
def check_file_availability(url):
|
23 |
-
exit_status = os.system(f"wget --spider {url}")
|
24 |
return exit_status == 0
|
25 |
|
26 |
|
@@ -33,18 +31,6 @@ def url_is_valid(url):
|
|
33 |
st.error("Extension not supported.")
|
34 |
return False
|
35 |
try:
|
36 |
-
r = requests.get(url)
|
37 |
-
r.raise_for_status()
|
38 |
-
return True
|
39 |
-
except requests.exceptions.HTTPError as err:
|
40 |
-
msg = (
|
41 |
-
"requests get failed with status code "
|
42 |
-
+ str(err.response.status_code)
|
43 |
-
+ " for url "
|
44 |
-
+ url
|
45 |
-
+ ". Try wget spider."
|
46 |
-
)
|
47 |
-
logging.error(msg)
|
48 |
return check_file_availability(url)
|
49 |
except Exception:
|
50 |
st.error("URL is not valid.")
|
@@ -79,12 +65,19 @@ def plot_audio(_audio_segment: AudioSegment, *args, **kwargs) -> Image.Image:
|
|
79 |
|
80 |
|
81 |
@st.cache_data(show_spinner=False)
|
82 |
-
def load_list_of_songs():
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
def get_random_song():
|
87 |
sample_songs = load_list_of_songs()
|
|
|
|
|
88 |
name, url = random.choice(list(sample_songs.items()))
|
89 |
return name, url
|
90 |
|
|
|
1 |
import json
|
|
|
2 |
import os
|
3 |
import random
|
4 |
from base64 import b64encode
|
|
|
7 |
|
8 |
import matplotlib.pyplot as plt
|
9 |
import numpy as np
|
|
|
10 |
import streamlit as st
|
11 |
from PIL import Image
|
12 |
from pydub import AudioSegment
|
|
|
18 |
|
19 |
|
20 |
def check_file_availability(url):
|
21 |
+
exit_status = os.system(f"wget -o --spider {url}")
|
22 |
return exit_status == 0
|
23 |
|
24 |
|
|
|
31 |
st.error("Extension not supported.")
|
32 |
return False
|
33 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return check_file_availability(url)
|
35 |
except Exception:
|
36 |
st.error("URL is not valid.")
|
|
|
65 |
|
66 |
|
67 |
@st.cache_data(show_spinner=False)
|
68 |
+
def load_list_of_songs(path="sample_songs.json"):
|
69 |
+
if os.environ.get("PREPARE_SAMPLES"):
|
70 |
+
return json.load(open(path))
|
71 |
+
else:
|
72 |
+
st.error(
|
73 |
+
"No examples available. You need to set the environment variable `PREPARE_SAMPLES=true`"
|
74 |
+
)
|
75 |
|
76 |
|
77 |
def get_random_song():
|
78 |
sample_songs = load_list_of_songs()
|
79 |
+
if sample_songs is None:
|
80 |
+
return None, None
|
81 |
name, url = random.choice(list(sample_songs.items()))
|
82 |
return name, url
|
83 |
|
app/pages/Separate.py
CHANGED
@@ -1,21 +1,22 @@
|
|
1 |
import os
|
2 |
from pathlib import Path
|
|
|
|
|
3 |
|
4 |
import streamlit as st
|
5 |
-
from
|
6 |
-
|
7 |
-
from service.demucs_runner import separator
|
8 |
from helpers import (
|
9 |
load_audio_segment,
|
|
|
10 |
plot_audio,
|
11 |
st_local_audio,
|
12 |
url_is_valid,
|
13 |
)
|
|
|
|
|
|
|
14 |
|
15 |
-
from service.vocal_remover.runner import separate, load_model
|
16 |
-
|
17 |
-
from footer import footer
|
18 |
-
from header import header
|
19 |
|
20 |
label_sources = {
|
21 |
"no_vocals.mp3": "🎶 Instrumental",
|
@@ -27,28 +28,104 @@ label_sources = {
|
|
27 |
"other.mp3": "🎶 Other",
|
28 |
}
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
|
33 |
out_path = Path("/tmp")
|
34 |
in_path = Path("/tmp")
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def reset_execution():
|
38 |
st.session_state.executed = False
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def body():
|
42 |
filename = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
cols = st.columns([1, 3, 2, 1])
|
44 |
with cols[1]:
|
45 |
-
with st.columns([1,
|
46 |
option = option_menu(
|
47 |
menu_title=None,
|
48 |
-
options=["Upload File", "From URL"],
|
49 |
-
icons=["cloud-upload-fill", "link-45deg"],
|
50 |
orientation="horizontal",
|
51 |
-
styles={
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
key="option_separate",
|
53 |
)
|
54 |
if option == "Upload File":
|
@@ -64,18 +141,32 @@ def body():
|
|
64 |
filename = uploaded_file.name
|
65 |
st_local_audio(in_path / filename, key="input_upload_file")
|
66 |
|
67 |
-
elif option == "From URL":
|
68 |
url = st.text_input(
|
69 |
"Paste the URL of the audio file",
|
70 |
key="url_input",
|
71 |
help="Supported formats: mp3, wav, ogg, flac.",
|
72 |
)
|
73 |
-
if url != "":
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
os.system(f"wget -O {in_path / filename} {url}")
|
78 |
st_local_audio(in_path / filename, key="input_from_url")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
with cols[2]:
|
80 |
separation_mode = st.selectbox(
|
81 |
"Choose the separation mode",
|
@@ -92,6 +183,7 @@ def body():
|
|
92 |
max_duration = 30
|
93 |
else:
|
94 |
max_duration = 15
|
|
|
95 |
|
96 |
if filename is not None:
|
97 |
song = load_audio_segment(in_path / filename, filename.split(".")[-1])
|
@@ -124,10 +216,10 @@ def body():
|
|
124 |
st.session_state.executed = False
|
125 |
|
126 |
if not st.session_state.executed:
|
|
|
127 |
song.export(in_path / filename, format=filename.split(".")[-1])
|
128 |
with st.spinner("Separating source audio, it will take a while..."):
|
129 |
-
if
|
130 |
-
model_name = "vocal_remover"
|
131 |
model, device = load_model(pretrained_model="baseline.pth")
|
132 |
separate(
|
133 |
input=in_path / filename,
|
@@ -137,13 +229,7 @@ def body():
|
|
137 |
)
|
138 |
else:
|
139 |
stem = None
|
140 |
-
|
141 |
-
if (
|
142 |
-
separation_mode
|
143 |
-
== "Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)"
|
144 |
-
):
|
145 |
-
model_name = "htdemucs_6s"
|
146 |
-
elif separation_mode == "Vocals & Instrumental (High Quality, Slower)":
|
147 |
stem = "vocals"
|
148 |
|
149 |
separator(
|
@@ -162,39 +248,12 @@ def body():
|
|
162 |
start_time=start_time,
|
163 |
end_time=end_time,
|
164 |
)
|
165 |
-
|
166 |
filename = None
|
167 |
st.session_state.executed = True
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
for file in [
|
172 |
-
"no_vocals.mp3",
|
173 |
-
"vocals.mp3",
|
174 |
-
"drums.mp3",
|
175 |
-
"bass.mp3",
|
176 |
-
"guitar.mp3",
|
177 |
-
"piano.mp3",
|
178 |
-
"other.mp3",
|
179 |
-
]:
|
180 |
-
fullpath = path / file
|
181 |
-
if fullpath.exists():
|
182 |
-
sources[file] = fullpath
|
183 |
-
return sources
|
184 |
-
|
185 |
-
sources = get_sources(out_path / Path(model_name) / last_dir)
|
186 |
-
tab_sources = st.tabs([f"**{label_sources.get(k)}**" for k in sources.keys()])
|
187 |
-
for i, (file, pathname) in enumerate(sources.items()):
|
188 |
-
with tab_sources[i]:
|
189 |
-
cols = st.columns(2)
|
190 |
-
with cols[0]:
|
191 |
-
auseg = load_audio_segment(pathname, "mp3")
|
192 |
-
st.image(
|
193 |
-
plot_audio(auseg, title="", file=file),
|
194 |
-
use_column_width="always",
|
195 |
-
)
|
196 |
-
with cols[1]:
|
197 |
-
st_local_audio(pathname, key=f"output_{file}")
|
198 |
|
199 |
|
200 |
if __name__ == "__main__":
|
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
+
from typing import List
|
4 |
+
from loguru import logger as log
|
5 |
|
6 |
import streamlit as st
|
7 |
+
from footer import footer
|
8 |
+
from header import header
|
|
|
9 |
from helpers import (
|
10 |
load_audio_segment,
|
11 |
+
load_list_of_songs,
|
12 |
plot_audio,
|
13 |
st_local_audio,
|
14 |
url_is_valid,
|
15 |
)
|
16 |
+
from service.demucs_runner import separator
|
17 |
+
from service.vocal_remover.runner import load_model, separate
|
18 |
+
from streamlit_option_menu import option_menu
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
label_sources = {
|
22 |
"no_vocals.mp3": "🎶 Instrumental",
|
|
|
28 |
"other.mp3": "🎶 Other",
|
29 |
}
|
30 |
|
31 |
+
separation_mode_to_model = {
|
32 |
+
"Vocals & Instrumental (Faster)": ("vocal_remover", ["vocals.mp3", "no_vocals.mp3"]),
|
33 |
+
"Vocals & Instrumental (High Quality, Slower)": ("htdemucs", ["vocals.mp3", "no_vocals.mp3"]),
|
34 |
+
"Vocals, Drums, Bass & Other (Slower)": (
|
35 |
+
"htdemucs",
|
36 |
+
["vocals.mp3", "drums.mp3", "bass.mp3", "other.mp3"],
|
37 |
+
),
|
38 |
+
"Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)": (
|
39 |
+
"htdemucs_6s",
|
40 |
+
["vocals.mp3", "drums.mp3", "bass.mp3", "guitar.mp3", "piano.mp3", "other.mp3"],
|
41 |
+
),
|
42 |
+
}
|
43 |
|
44 |
+
extensions = ["mp3", "wav", "ogg", "flac"]
|
45 |
|
46 |
out_path = Path("/tmp")
|
47 |
in_path = Path("/tmp")
|
48 |
|
49 |
|
50 |
+
@st.cache_data(show_spinner=False)
|
51 |
+
def get_sources(path, file_sources):
|
52 |
+
sources = {}
|
53 |
+
for file in file_sources:
|
54 |
+
fullpath = path / file
|
55 |
+
if fullpath.exists():
|
56 |
+
sources[file] = fullpath
|
57 |
+
return sources
|
58 |
+
|
59 |
+
|
60 |
def reset_execution():
|
61 |
st.session_state.executed = False
|
62 |
|
63 |
|
64 |
+
def show_results(model_name: str, dir_name_output: str, file_sources: List):
|
65 |
+
sources = get_sources(out_path / Path(model_name) / dir_name_output, file_sources)
|
66 |
+
tab_sources = st.tabs([f"**{label_sources.get(k)}**" for k in sources.keys()])
|
67 |
+
for i, (file, pathname) in enumerate(sources.items()):
|
68 |
+
with tab_sources[i]:
|
69 |
+
cols = st.columns(2)
|
70 |
+
with cols[0]:
|
71 |
+
auseg = load_audio_segment(pathname, "mp3")
|
72 |
+
st.image(
|
73 |
+
plot_audio(
|
74 |
+
auseg,
|
75 |
+
title="",
|
76 |
+
file=file,
|
77 |
+
model_name=model_name,
|
78 |
+
dir_name_output=dir_name_output,
|
79 |
+
),
|
80 |
+
use_column_width="always",
|
81 |
+
)
|
82 |
+
with cols[1]:
|
83 |
+
st_local_audio(pathname, key=f"output_{file}_{dir_name_output}")
|
84 |
+
log.info(f"Displaying results for {dir_name_output}")
|
85 |
+
|
86 |
+
|
87 |
def body():
|
88 |
filename = None
|
89 |
+
name_song = None
|
90 |
+
st.markdown(
|
91 |
+
"""
|
92 |
+
<style>
|
93 |
+
div[data-baseweb="tab-list"] {
|
94 |
+
align-items: center !important;
|
95 |
+
justify-content: center !important;
|
96 |
+
}
|
97 |
+
</style>""",
|
98 |
+
unsafe_allow_html=True,
|
99 |
+
)
|
100 |
+
|
101 |
cols = st.columns([1, 3, 2, 1])
|
102 |
with cols[1]:
|
103 |
+
with st.columns([1, 8, 1])[1]:
|
104 |
option = option_menu(
|
105 |
menu_title=None,
|
106 |
+
options=["Upload File", "From URL", "Examples"],
|
107 |
+
icons=["cloud-upload-fill", "link-45deg", "music-note-list"],
|
108 |
orientation="horizontal",
|
109 |
+
styles={
|
110 |
+
"container": {
|
111 |
+
"width": "100%",
|
112 |
+
"height": "3.5rem",
|
113 |
+
"margin": "0px",
|
114 |
+
"padding": "0px",
|
115 |
+
},
|
116 |
+
"icon": {"font-size": "1rem"},
|
117 |
+
"nav-link": {
|
118 |
+
"display": "flex",
|
119 |
+
"height": "3rem",
|
120 |
+
"justify-content": "center",
|
121 |
+
"align-items": "center",
|
122 |
+
"text-align": "center",
|
123 |
+
"flex-direction": "column",
|
124 |
+
"font-size": "1rem",
|
125 |
+
"padding-left": "0px",
|
126 |
+
"padding-right": "0px",
|
127 |
+
},
|
128 |
+
},
|
129 |
key="option_separate",
|
130 |
)
|
131 |
if option == "Upload File":
|
|
|
141 |
filename = uploaded_file.name
|
142 |
st_local_audio(in_path / filename, key="input_upload_file")
|
143 |
|
144 |
+
elif option == "From URL":
|
145 |
url = st.text_input(
|
146 |
"Paste the URL of the audio file",
|
147 |
key="url_input",
|
148 |
help="Supported formats: mp3, wav, ogg, flac.",
|
149 |
)
|
150 |
+
if url != "" and url_is_valid(url):
|
151 |
+
with st.spinner("Downloading audio..."):
|
152 |
+
filename = url.split("/")[-1]
|
153 |
+
os.system(f"wget -q -O {in_path / filename} {url}")
|
|
|
154 |
st_local_audio(in_path / filename, key="input_from_url")
|
155 |
+
elif option == "Examples":
|
156 |
+
samples_song = load_list_of_songs(path="separate_songs.json")
|
157 |
+
if samples_song is not None:
|
158 |
+
name_song = st.selectbox(
|
159 |
+
label="Select a song",
|
160 |
+
options=list(samples_song.keys()),
|
161 |
+
format_func=lambda x: x.replace("_", " "),
|
162 |
+
index=1,
|
163 |
+
key="select_example",
|
164 |
+
)
|
165 |
+
if (Path("/tmp") / name_song).exists():
|
166 |
+
st_local_audio(Path("/tmp") / name_song, key=f"input_from_sample_{name_song}")
|
167 |
+
else:
|
168 |
+
name_song = None
|
169 |
+
|
170 |
with cols[2]:
|
171 |
separation_mode = st.selectbox(
|
172 |
"Choose the separation mode",
|
|
|
183 |
max_duration = 30
|
184 |
else:
|
185 |
max_duration = 15
|
186 |
+
model_name, file_sources = separation_mode_to_model[separation_mode]
|
187 |
|
188 |
if filename is not None:
|
189 |
song = load_audio_segment(in_path / filename, filename.split(".")[-1])
|
|
|
216 |
st.session_state.executed = False
|
217 |
|
218 |
if not st.session_state.executed:
|
219 |
+
log.info(f"{option} - Separating {filename} with {separation_mode}...")
|
220 |
song.export(in_path / filename, format=filename.split(".")[-1])
|
221 |
with st.spinner("Separating source audio, it will take a while..."):
|
222 |
+
if model_name == "vocal_remover":
|
|
|
223 |
model, device = load_model(pretrained_model="baseline.pth")
|
224 |
separate(
|
225 |
input=in_path / filename,
|
|
|
229 |
)
|
230 |
else:
|
231 |
stem = None
|
232 |
+
if separation_mode == "Vocals & Instrumental (High Quality, Slower)":
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
stem = "vocals"
|
234 |
|
235 |
separator(
|
|
|
248 |
start_time=start_time,
|
249 |
end_time=end_time,
|
250 |
)
|
251 |
+
dir_name_output = ".".join(filename.split(".")[:-1])
|
252 |
filename = None
|
253 |
st.session_state.executed = True
|
254 |
+
show_results(model_name, dir_name_output, file_sources)
|
255 |
+
elif name_song is not None and option == "Examples":
|
256 |
+
show_results(model_name, name_song, file_sources)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
|
259 |
if __name__ == "__main__":
|
app/style.py
CHANGED
@@ -124,6 +124,12 @@ CSS = (
|
|
124 |
gap: 0rem;
|
125 |
}
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
</style>
|
129 |
|
|
|
124 |
gap: 0rem;
|
125 |
}
|
126 |
|
127 |
+
/* center the audio player in Separate page */
|
128 |
+
.css-keje6w.e1tzin5v1 {
|
129 |
+
display: flex;
|
130 |
+
justify-content: center;
|
131 |
+
align-items: center;
|
132 |
+
}
|
133 |
|
134 |
</style>
|
135 |
|
requirements.in
CHANGED
@@ -14,3 +14,4 @@ resampy==0.4.2
|
|
14 |
stqdm==0.0.5
|
15 |
streamlit_option_menu==0.3.6
|
16 |
htbuilder==0.6.1
|
|
|
|
14 |
stqdm==0.0.5
|
15 |
streamlit_option_menu==0.3.6
|
16 |
htbuilder==0.6.1
|
17 |
+
loguru==0.7.0
|
requirements.txt
CHANGED
@@ -38,7 +38,7 @@ contourpy==1.1.0
|
|
38 |
# via matplotlib
|
39 |
cycler==0.11.0
|
40 |
# via matplotlib
|
41 |
-
cython==0.29.
|
42 |
# via diffq
|
43 |
decorator==5.1.1
|
44 |
# via
|
@@ -91,14 +91,16 @@ kaleido==0.2.1
|
|
91 |
# via -r requirements.in
|
92 |
kiwisolver==1.4.4
|
93 |
# via matplotlib
|
94 |
-
lameenc==1.5.
|
95 |
# via demucs
|
96 |
-
lazy-loader==0.
|
97 |
# via librosa
|
98 |
librosa==0.10.0.post2
|
99 |
# via -r requirements.in
|
100 |
llvmlite==0.40.1
|
101 |
# via numba
|
|
|
|
|
102 |
markdown-it-py==3.0.0
|
103 |
# via rich
|
104 |
markupsafe==2.1.3
|
@@ -152,7 +154,7 @@ pandas==1.5.3
|
|
152 |
# -r requirements.in
|
153 |
# altair
|
154 |
# streamlit
|
155 |
-
pillow==
|
156 |
# via
|
157 |
# matplotlib
|
158 |
# streamlit
|
@@ -271,7 +273,7 @@ tqdm==4.65.0
|
|
271 |
# stqdm
|
272 |
treetable==0.2.5
|
273 |
# via dora-search
|
274 |
-
typing-extensions==4.7.
|
275 |
# via
|
276 |
# librosa
|
277 |
# rich
|
|
|
38 |
# via matplotlib
|
39 |
cycler==0.11.0
|
40 |
# via matplotlib
|
41 |
+
cython==0.29.36
|
42 |
# via diffq
|
43 |
decorator==5.1.1
|
44 |
# via
|
|
|
91 |
# via -r requirements.in
|
92 |
kiwisolver==1.4.4
|
93 |
# via matplotlib
|
94 |
+
lameenc==1.5.1
|
95 |
# via demucs
|
96 |
+
lazy-loader==0.3
|
97 |
# via librosa
|
98 |
librosa==0.10.0.post2
|
99 |
# via -r requirements.in
|
100 |
llvmlite==0.40.1
|
101 |
# via numba
|
102 |
+
loguru==0.7.0
|
103 |
+
# via -r requirements.in
|
104 |
markdown-it-py==3.0.0
|
105 |
# via rich
|
106 |
markupsafe==2.1.3
|
|
|
154 |
# -r requirements.in
|
155 |
# altair
|
156 |
# streamlit
|
157 |
+
pillow==10.0.0
|
158 |
# via
|
159 |
# matplotlib
|
160 |
# streamlit
|
|
|
273 |
# stqdm
|
274 |
treetable==0.2.5
|
275 |
# via dora-search
|
276 |
+
typing-extensions==4.7.1
|
277 |
# via
|
278 |
# librosa
|
279 |
# rich
|
scripts/inference.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import argparse
|
|
|
2 |
|
3 |
import warnings
|
4 |
from app.service.vocal_remover.runner import load_model, separate
|
|
|
5 |
|
6 |
warnings.simplefilter("ignore", UserWarning)
|
7 |
warnings.simplefilter("ignore", FutureWarning)
|
@@ -14,16 +16,35 @@ def main():
|
|
14 |
p.add_argument("--pretrained_model", "-P", type=str, default="baseline.pth")
|
15 |
p.add_argument("--input", "-i", required=True)
|
16 |
p.add_argument("--output_dir", "-o", type=str, default="")
|
|
|
17 |
args = p.parse_args()
|
18 |
|
|
|
|
|
19 |
model, device = load_model(pretrained_model=args.pretrained_model)
|
20 |
separate(
|
21 |
-
input=
|
22 |
model=model,
|
23 |
device=device,
|
24 |
output_dir=args.output_dir,
|
25 |
-
only_no_vocals=
|
26 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
if __name__ == "__main__":
|
|
|
1 |
import argparse
|
2 |
+
from pathlib import Path
|
3 |
|
4 |
import warnings
|
5 |
from app.service.vocal_remover.runner import load_model, separate
|
6 |
+
from app.service.demucs_runner import separator
|
7 |
|
8 |
warnings.simplefilter("ignore", UserWarning)
|
9 |
warnings.simplefilter("ignore", FutureWarning)
|
|
|
16 |
p.add_argument("--pretrained_model", "-P", type=str, default="baseline.pth")
|
17 |
p.add_argument("--input", "-i", required=True)
|
18 |
p.add_argument("--output_dir", "-o", type=str, default="")
|
19 |
+
p.add_argument("--only_no_vocals", "-n", action="store_true")
|
20 |
args = p.parse_args()
|
21 |
|
22 |
+
input_file = args.input
|
23 |
+
|
24 |
model, device = load_model(pretrained_model=args.pretrained_model)
|
25 |
separate(
|
26 |
+
input=input_file,
|
27 |
model=model,
|
28 |
device=device,
|
29 |
output_dir=args.output_dir,
|
30 |
+
only_no_vocals=args.only_no_vocals,
|
31 |
)
|
32 |
+
if not args.only_no_vocals:
|
33 |
+
for stem, model_name in [("vocals", "htdemucs"), (None, "htdemucs"), (None, "htdemucs_6s")]:
|
34 |
+
separator(
|
35 |
+
tracks=[Path(input_file)],
|
36 |
+
out=Path(args.output_dir),
|
37 |
+
model=model_name,
|
38 |
+
shifts=1,
|
39 |
+
overlap=0.5,
|
40 |
+
stem=stem,
|
41 |
+
int24=False,
|
42 |
+
float32=False,
|
43 |
+
clip_mode="rescale",
|
44 |
+
mp3=True,
|
45 |
+
mp3_bitrate=320,
|
46 |
+
verbose=False,
|
47 |
+
)
|
48 |
|
49 |
|
50 |
if __name__ == "__main__":
|
scripts/prepare_samples.sh
CHANGED
@@ -22,3 +22,21 @@ for name in $(echo "${json}" | jq -r 'keys[]'); do
|
|
22 |
python inference.py --input /tmp/${name} --output /tmp
|
23 |
echo "Done separating ${name}"
|
24 |
done
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
python inference.py --input /tmp/${name} --output /tmp
|
23 |
echo "Done separating ${name}"
|
24 |
done
|
25 |
+
|
26 |
+
|
27 |
+
# Read JSON file into a variable
|
28 |
+
json_separate=$(cat separate_songs.json)
|
29 |
+
|
30 |
+
# Iterate through keys and values
|
31 |
+
for name in $(echo "${json_separate}" | jq -r 'keys[]'); do
|
32 |
+
url=$(echo "${json_separate}" | jq -r --arg name "${name}" '.[$name]')
|
33 |
+
echo "Separating ${name} from ${url}"
|
34 |
+
|
35 |
+
# Download with pytube
|
36 |
+
yt-dlp ${url} -o "/tmp/${name}" --format "bestaudio/best" --download-sections "*45-110"
|
37 |
+
mkdir -p "/tmp/vocal_remover"
|
38 |
+
|
39 |
+
# Run inference
|
40 |
+
python inference.py --input /tmp/${name} --output /tmp --only_no_vocals false
|
41 |
+
echo "Done separating ${name}"
|
42 |
+
done
|
scripts/separate_songs.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ABBA_-_Dancing_Queen": "https://www.youtube.com/watch?v=3qiMJt-JBb4",
|
3 |
+
"Queen_–_Bohemian_Rhapsody": "https://www.youtube.com/watch?v=yk3prd8GER4",
|
4 |
+
"Backstreet_Boys_-_I_Want_It_That_Way": "https://www.youtube.com/watch?v=qjlVAsvQLM8",
|
5 |
+
"The_Beatles_-_Let_It_Be": "https://www.youtube.com/watch?v=FIV73iG_e5I",
|
6 |
+
"Coldplay_-_Viva_La_Vida": "https://www.youtube.com/watch?v=a1EYnngNHIA",
|
7 |
+
"The_Cranberries_-_Zombie": "https://www.youtube.com/watch?v=8sM-rm4lFZg"
|
8 |
+
}
|