File size: 6,662 Bytes
505f510
 
 
 
2115e90
 
4461b69
505f510
 
 
418e72c
505f510
 
 
 
 
 
 
 
 
 
 
 
2ffe56d
 
 
 
 
 
505f510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e5f28
505f510
 
 
 
 
 
 
 
 
 
 
 
 
 
86e5f28
2225f99
 
1e62d89
505f510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4461b69
2115e90
 
 
4461b69
505f510
2115e90
4461b69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import json
import os
from pathlib import Path
from typing import List, Tuple
import tempfile
import soundfile as sf
import gradio as gr

import numpy as np
import torch
import torchaudio
# from app.pipelines import Pipeline
from fairseq import hub_utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.speech_to_speech.hub_interface import S2SHubInterface
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
from fairseq.models.text_to_speech.hub_interface import (
    TTSHubInterface,
    VocoderHubInterface,
)
from huggingface_hub import snapshot_download

ARG_OVERRIDES_MAP = {
    "facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022": {
        "config_yaml": "config.yaml",
        "task": "speech_to_text",
    }
}

class SpeechToSpeechPipeline():
    def __init__(self, model_id: str):
        arg_overrides = ARG_OVERRIDES_MAP.get(
            model_id, {}
        )  # Model specific override. TODO: Update on checkpoint side in the future
        arg_overrides["config_yaml"] = "config.yaml"  # common override
        models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
            model_id,
            arg_overrides=arg_overrides,
            cache_dir=os.getenv("HUGGINGFACE_HUB_CACHE"),
        )
        self.cfg = cfg
        self.model = models[0].cpu()
        self.model.eval()
        self.task = task

        self.sampling_rate = getattr(self.task, "sr", None) or 16_000

        tgt_lang = self.task.data_cfg.hub.get("tgt_lang", None)
        pfx = f"{tgt_lang}_" if self.task.data_cfg.prepend_tgt_lang_tag else ""

        generation_args = self.task.data_cfg.hub.get(f"{pfx}generation_args", None)
        if generation_args is not None:
            for key in generation_args:
                setattr(cfg.generation, key, generation_args[key])
        self.generator = task.build_generator([self.model], cfg.generation)

        tts_model_id = self.task.data_cfg.hub.get(f"{pfx}tts_model_id", None)
        self.unit_vocoder = self.task.data_cfg.hub.get(f"{pfx}unit_vocoder", None)
        self.tts_model, self.tts_task, self.tts_generator = None, None, None
        if tts_model_id is not None:
            _id = tts_model_id.split(":")[-1]
            cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE")
            if self.unit_vocoder is not None:
                library_name = "fairseq"
                cache_dir = (
                    cache_dir or (Path.home() / ".cache" / library_name).as_posix()
                )
                cache_dir = snapshot_download(
                    f"facebook/{_id}", cache_dir=cache_dir, library_name=library_name
                )

                x = hub_utils.from_pretrained(
                    cache_dir,
                    "model.pt",
                    ".",
                    archive_map=CodeHiFiGANVocoder.hub_models(),
                    config_yaml="config.json",
                    fp16=False,
                    is_vocoder=True,
                )

                with open(f"{x['args']['data']}/config.json") as f:
                    vocoder_cfg = json.load(f)
                assert (
                    len(x["args"]["model_path"]) == 1
                ), "Too many vocoder models in the input"

                vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
                self.tts_model = VocoderHubInterface(vocoder_cfg, vocoder)

            else:
                (
                    tts_models,
                    tts_cfg,
                    self.tts_task,
                ) = load_model_ensemble_and_task_from_hf_hub(
                    f"facebook/{_id}",
                    arg_overrides={"vocoder": "griffin_lim", "fp16": False},
                    cache_dir=cache_dir,
                )
                self.tts_model = tts_models[0].cpu()
                self.tts_model.eval()
                tts_cfg["task"].cpu = True
                TTSHubInterface.update_cfg_with_data_cfg(
                    tts_cfg, self.tts_task.data_cfg
                )
                self.tts_generator = self.tts_task.build_generator(
                    [self.tts_model], tts_cfg
                )

    def __call__(self, inputs: str) -> Tuple[np.array, int, List[str]]:
        """
        Args:
            inputs (:obj:`np.array`):
                The raw waveform of audio received. By default sampled at `self.sampling_rate`.
                The shape of this array is `T`, where `T` is the time axis
        Return:
            A :obj:`tuple` containing:
              - :obj:`np.array`:
                 The return shape of the array must be `C'`x`T'`
              - a :obj:`int`: the sampling rate as an int in Hz.
              - a :obj:`List[str]`: the annotation for each out channel.
                    This can be the name of the instruments for audio source separation
                    or some annotation for speech enhancement. The length must be `C'`.
        """
        # _inputs = torch.from_numpy(inputs).unsqueeze(0)
        # print(f"input: {inputs}")
        # _inputs = torchaudio.load(inputs)
        _inputs = inputs
        sample, text = None, None
        if self.cfg.task._name in ["speech_to_text", "speech_to_text_sharded"]:
            sample = S2THubInterface.get_model_input(self.task, _inputs)
            text = S2THubInterface.get_prediction(
                self.task, self.model, self.generator, sample
            )
        elif self.cfg.task._name in ["speech_to_speech"]:
            s2shubinerface = S2SHubInterface(self.cfg, self.task, self.model)
            sample = s2shubinerface.get_model_input(self.task, _inputs)
            text = S2SHubInterface.get_prediction(
                self.task, self.model, self.generator, sample
            )

        wav, sr = np.zeros((0,)), self.sampling_rate
        if self.unit_vocoder is not None:
            tts_sample = self.tts_model.get_model_input(text)
            wav, sr = self.tts_model.get_prediction(tts_sample)
            text = ""
        else:
            tts_sample = TTSHubInterface.get_model_input(self.tts_task, text)
            wav, sr = TTSHubInterface.get_prediction(
                self.tts_task, self.tts_model, self.tts_generator, tts_sample
            )
        temp_file = ""
        with tempfile.NamedTemporaryFile(suffix=".wav") as tmp_output_file:
            sf.write(tmp_output_file, wav.detach().cpu().numpy(), sr)
            tmp_output_file.seek(0)
            temp_file = gr.Audio(tmp_output_file.name)

        # return wav, sr, [text]
        return temp_file