Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import numpy as np | |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub | |
from fairseq.models.speech_to_speech.hub_interface import S2SHubInterface | |
from fairseq.models.speech_to_text.hub_interface import S2THubInterface | |
from audio_pipe import SpeechToSpeechPipeline | |
io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_en-hk", api_key=os.environ['api_key']) | |
io2 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_hk-en", api_key=os.environ['api_key']) | |
io3 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_en-hk", api_key=os.environ['api_key']) | |
io4 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_hk-en", api_key=os.environ['api_key']) | |
pipe = SpeechToSpeechPipeline("facebook/xm_transformer_unity_hk-en") | |
def call_model(audio, model): | |
# pipe = SpeechToSpeechPipeline("facebook/xm_transformer_unity_hk-en") | |
# wav, sr, text = pipe(audio) | |
temp_file = pipe(audio) | |
return gr.Audio(temp_file) | |
def inference(audio, model): | |
if model == "xm_transformer_s2ut_en-hk": | |
out_audio = io1(audio) | |
elif model == "xm_transformer_s2ut_hk-en": | |
out_audio = io2(audio) | |
elif model == "xm_transformer_unity_en-hk": | |
out_audio = io3(audio) | |
elif model == "xm_transformer_unity_hk-en_gpu": | |
out_audio = call_model(audio, model) | |
else: | |
out_audio = io4(audio) | |
return out_audio | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: black; | |
border-color: grey; | |
background: white; | |
} | |
input[type='range'] { | |
accent-color: black; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.prompt h4{ | |
margin: 1.25em 0 .25em 0; | |
font-weight: bold; | |
font-size: 115%; | |
} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
""" | |
block = gr.Blocks(css=css) | |
with block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Hokkien Translation | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
A demo for fairseq speech-to-speech translation models. It supports S2UT and UnitY models for bidirectional Hokkien and English translation. Please select the model and record the input to submit. | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
audio = gr.Audio( | |
source="microphone", type="filepath", label="Input" | |
) | |
btn = gr.Button("Submit") | |
model = gr.Dropdown(choices=["xm_transformer_unity_en-hk", "xm_transformer_unity_hk-en", "xm_transformer_unity_hk-en_gpu", "xm_transformer_s2ut_en-hk", "xm_transformer_s2ut_hk-en"], value="xm_transformer_unity_en-hk",type="value", label="Model") | |
out = gr.Audio(label="Output") | |
btn.click(inference, inputs=[audio, model], outputs=out) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>Model by <a href="https://ai.facebook.com/" style="text-decoration: underline;" target="_blank">Meta AI</a> | |
</p> | |
</div> | |
''') | |
block.launch() |