Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under thmage license found in the | |
# LICENSE file in the root directory of this source tree. | |
import spaces | |
import argparse | |
import logging | |
import os | |
from pathlib import Path | |
import subprocess as sp | |
import sys | |
from tempfile import NamedTemporaryFile | |
import time | |
import typing as tp | |
import warnings | |
import torch | |
import gradio as gr | |
from audiocraft.data.audio_utils import convert_audio | |
from audiocraft.data.audio import audio_read, audio_write | |
from audiocraft.models import MelodyFlow | |
MODEL = None # Last used model | |
SPACE_ID = os.environ.get('SPACE_ID', '') | |
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/') | |
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID | |
MAX_BATCH_SIZE = 12 | |
N_REPEATS = 3 | |
INTERRUPTING = False | |
MBD = None | |
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform | |
_old_call = sp.call | |
EULER = "euler" | |
MIDPOINT = "midpoint" | |
def interrupt(): | |
global INTERRUPTING | |
INTERRUPTING = True | |
class FileCleaner: | |
def __init__(self, file_lifetime: float = 3600): | |
self.file_lifetime = file_lifetime | |
self.files = [] | |
def add(self, path: tp.Union[str, Path]): | |
self._cleanup() | |
self.files.append((time.time(), Path(path))) | |
def _cleanup(self): | |
now = time.time() | |
for time_added, path in list(self.files): | |
if now - time_added > self.file_lifetime: | |
if path.exists(): | |
path.unlink() | |
self.files.pop(0) | |
else: | |
break | |
file_cleaner = FileCleaner() | |
def make_waveform(*args, **kwargs): | |
# Further remove some warnings. | |
be = time.time() | |
with warnings.catch_warnings(): | |
warnings.simplefilter('ignore') | |
out = gr.make_waveform(*args, **kwargs) | |
print("Make a video took", time.time() - be) | |
return out | |
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")): | |
global MODEL | |
print("Loading model", version) | |
if MODEL is None or MODEL.name != version: | |
# Clear PyTorch CUDA cache and delete model | |
del MODEL | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
MODEL = None # in case loading would crash | |
MODEL = MelodyFlow.get_pretrained(version) | |
def _do_predictions(texts, | |
melodies, | |
solver, | |
steps, | |
target_flowstep, | |
regularize, | |
regularization_strength, | |
duration, | |
progress=False, | |
): | |
MODEL.set_generation_params(solver=solver, | |
steps=steps, | |
duration=duration,) | |
MODEL.set_editing_params(solver=solver, | |
steps=steps, | |
target_flowstep=target_flowstep, | |
regularize=regularize, | |
lambda_kl=regularization_strength) | |
print("new batch", len(texts), texts, [None if m is None else m for m in melodies]) | |
be = time.time() | |
processed_melodies = [] | |
target_sr = 48000 | |
target_ac = 2 | |
for melody in melodies: | |
if melody is None: | |
processed_melodies.append(None) | |
else: | |
melody, sr = audio_read(melody) | |
if melody.dim() == 2: | |
melody = melody[None] | |
if melody.shape[-1] > int(sr * MODEL.duration): | |
melody = melody[..., :int(sr * MODEL.duration)] | |
melody = convert_audio(melody, sr, target_sr, target_ac) | |
melody = MODEL.encode_audio(melody.to(MODEL.device)) | |
processed_melodies.append(melody) | |
try: | |
if any(m is not None for m in processed_melodies): | |
outputs = MODEL.edit( | |
prompt_tokens=torch.cat(processed_melodies, dim=0).repeat(len(texts), 1, 1), | |
descriptions=texts, | |
src_descriptions=[""] * len(texts), | |
progress=progress, | |
return_tokens=False, | |
) | |
else: | |
outputs = MODEL.generate(texts, progress=progress, return_tokens=False) | |
except RuntimeError as e: | |
raise gr.Error("Error while generating " + e.args[0]) | |
outputs = outputs.detach().cpu().float() | |
out_wavs = [] | |
for output in outputs: | |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
audio_write( | |
file.name, output, MODEL.sample_rate, strategy="loudness", | |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) | |
out_wavs.append(file.name) | |
file_cleaner.add(file.name) | |
print("batch finished", len(texts), time.time() - be) | |
print("Tempfiles currently stored: ", len(file_cleaner.files)) | |
return out_wavs | |
def predict(model, text, | |
solver, steps, target_flowstep, | |
regularize, | |
regularization_strength, | |
duration, | |
melody=None, | |
model_path=None, | |
progress=gr.Progress()): | |
if melody is not None: | |
if solver == MIDPOINT: | |
steps = steps//2 | |
else: | |
steps = steps//5 | |
global INTERRUPTING | |
INTERRUPTING = False | |
progress(0, desc="Loading model...") | |
if model_path: | |
model_path = model_path.strip() | |
if not Path(model_path).exists(): | |
raise gr.Error(f"Model path {model_path} doesn't exist.") | |
if not Path(model_path).is_dir(): | |
raise gr.Error(f"Model path {model_path} must be a folder containing " | |
"state_dict.bin and compression_state_dict_.bin.") | |
model = model_path | |
load_model(model) | |
max_generated = 0 | |
def _progress(generated, to_generate): | |
nonlocal max_generated | |
max_generated = max(generated, max_generated) | |
progress((min(max_generated, to_generate), to_generate)) | |
if INTERRUPTING: | |
raise gr.Error("Interrupted.") | |
MODEL.set_custom_progress_callback(_progress) | |
wavs = _do_predictions( | |
[text] * N_REPEATS, [melody], | |
solver=solver, | |
steps=steps, | |
target_flowstep=target_flowstep, | |
regularize=regularize, | |
regularization_strength=regularization_strength, | |
duration=duration, | |
progress=True,) | |
outputs_ = [wav for wav in wavs] | |
return tuple(outputs_) | |
def toggle_audio_src(choice): | |
if choice == "mic": | |
return gr.update(sources=["microphone", "upload"], value=None, label="Microphone") | |
else: | |
return gr.update(sources=["upload", "microphone"], value=None, label="File") | |
def toggle_melody(melody): | |
if melody is None: | |
return gr.update(value=MIDPOINT) | |
else: | |
return gr.update(value=EULER) | |
def toggle_solver(solver, melody): | |
if melody is None: | |
if solver == MIDPOINT: | |
return gr.update(value=64.0, minimum=2, maximum=128.0, step=2.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0) | |
else: | |
return gr.update(value=64.0, minimum=1, maximum=128.0, step=1.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0) | |
else: | |
if solver == MIDPOINT: | |
return gr.update(value=128, minimum=4.0, maximum=256.0, step=4.0), gr.update(interactive=True, value=0.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=False, value=0.0) | |
else: | |
return gr.update(value=125, minimum=5.0, maximum=250.0, step=5.0), gr.update(interactive=True, value=0.0), gr.update(interactive=True, value=True), gr.update(interactive=True, value=0.2), gr.update(interactive=False, value=0.0) | |
def ui_local(launch_kwargs): | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
# MelodyFlow | |
This is your private demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft), | |
A fast text-guided music generation and editing model based on a single-stage flow matching DiT | |
presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"] (https://huggingface.co/papers/2407.03648) | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Input Text", interactive=True) | |
melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone", | |
interactive=True, elem_id="melody-input", min_length=1) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. | |
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False) | |
with gr.Row(): | |
model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")], | |
label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True) | |
model_path = gr.Text(label="Model Path (custom models)") | |
with gr.Row(): | |
solver = gr.Radio([EULER, MIDPOINT], | |
label="ODE Solver", value=MIDPOINT, interactive=True) | |
steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0, | |
step=2.0, value=128.0, interactive=True) | |
duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True) | |
with gr.Row(): | |
target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0, | |
maximum=1.0, value=0.0, interactive=False) | |
regularize = gr.Checkbox(label="Regularize", value=False, interactive=False) | |
regularization_strength = gr.Slider( | |
label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False) | |
with gr.Column(): | |
audio_outputs = [ | |
gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)] | |
submit.click(fn=predict, | |
inputs=[model, text, | |
solver, | |
steps, | |
target_flowstep, | |
regularize, | |
regularization_strength, | |
duration, | |
melody, | |
model_path,], | |
outputs=[o for o in audio_outputs]) | |
melody.change(toggle_melody, melody, [solver]) | |
solver.change(toggle_solver, [solver, melody], [steps, target_flowstep, | |
regularize, regularization_strength, duration]) | |
gr.Examples( | |
fn=predict, | |
examples=[ | |
[ | |
(MODEL_PREFIX + "melodyflow-t24-30secs"), | |
"80s electronic track with melodic synthesizers, catchy beat and groovy bass.", | |
MIDPOINT, | |
64, | |
1.0, | |
False, | |
0.0, | |
30.0, | |
None, | |
], | |
[ | |
(MODEL_PREFIX + "melodyflow-t24-30secs"), | |
"A cheerful country song with acoustic guitars accompanied by a nice piano melody.", | |
EULER, | |
125, | |
0.0, | |
True, | |
0.2, | |
-1.0, | |
"./assets/bolero_ravel.mp3", | |
], | |
], | |
inputs=[model, text, solver, steps, target_flowstep, | |
regularize, | |
regularization_strength, duration, melody,], | |
outputs=[audio_outputs], | |
cache_examples=False, | |
) | |
gr.Markdown( | |
""" | |
### More details | |
The model will generate a short music extract based on the description you provided. | |
The model can generate or edit up to 30 seconds of audio in one pass. | |
The model was trained with description from a stock music catalog, descriptions that will work best | |
should include some level of details on the instruments present, along with some intended use case | |
(e.g. adding "perfect for a commercial" can somehow help). | |
You can optionally provide a reference audio from which the model will elaborate an edited version | |
based on the text description, using MelodyFlow's regularized latent inversion. | |
**WARNING:** Choosing long durations will take a longer time to generate. | |
Available models are: | |
1. facebook/melodyflow-t24-30secs (1B) | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md) | |
for more details. | |
""" | |
) | |
interface.queue().launch(**launch_kwargs) | |
def ui_hf(launch_kwargs): | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
# MelodyFlow | |
This is the demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md), | |
a fast text-guided music generation and editing model based on a single-stage flow matching DiT | |
presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"](https://huggingface.co/papers/2407.03648). | |
Use of this demo is subject to [Meta's AI Terms of Service](https://www.facebook.com/legal/ai-terms). | |
<br/> | |
<a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true" | |
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" | |
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
for longer sequences, more control and no queue.</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Input Text", interactive=True) | |
melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone", | |
interactive=True, elem_id="melody-input", min_length=1) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. | |
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False) | |
with gr.Row(): | |
model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")], | |
label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True) | |
with gr.Row(): | |
solver = gr.Radio([EULER, MIDPOINT], | |
label="ODE Solver", value=MIDPOINT, interactive=True) | |
steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0, | |
step=2.0, value=128.0, interactive=True) | |
duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True) | |
with gr.Row(): | |
target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0, | |
maximum=1.0, value=0.0, interactive=False) | |
regularize = gr.Checkbox(label="Regularize", value=False, interactive=False) | |
regularization_strength = gr.Slider( | |
label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False) | |
with gr.Column(): | |
audio_outputs = [ | |
gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)] | |
submit.click(fn=predict, | |
inputs=[model, text, | |
solver, | |
steps, | |
target_flowstep, | |
regularize, | |
regularization_strength, | |
duration, | |
melody,], | |
outputs=[o for o in audio_outputs]) | |
melody.change(toggle_melody, melody, [solver]) | |
solver.change(toggle_solver, [solver, melody], [steps, target_flowstep, | |
regularize, regularization_strength, duration]) | |
gr.Examples( | |
fn=predict, | |
examples=[ | |
[ | |
(MODEL_PREFIX + "melodyflow-t24-30secs"), | |
"80s electronic track with melodic synthesizers, catchy beat and groovy bass.", | |
MIDPOINT, | |
64, | |
1.0, | |
False, | |
0.0, | |
30.0, | |
None, | |
], | |
[ | |
(MODEL_PREFIX + "melodyflow-t24-30secs"), | |
"A cheerful country song with acoustic guitars accompanied by a nice piano melody.", | |
EULER, | |
125, | |
0.0, | |
True, | |
0.2, | |
-1.0, | |
"./assets/bolero_ravel.mp3", | |
], | |
], | |
inputs=[model, text, solver, steps, target_flowstep, | |
regularize, | |
regularization_strength, duration, melody,], | |
outputs=[audio_outputs], | |
cache_examples=False, | |
) | |
gr.Markdown(""" | |
### More details | |
The model will generate or edit up to 30 seconds of audio based on the description you provided. | |
The model was trained with description from a stock music catalog, descriptions that will work best | |
should include some level of details on the instruments present, along with some intended use case | |
(e.g. adding "perfect for a commercial" can somehow help). | |
You can optionally provide a reference audio from which the model will elaborate an edited version | |
based on the text description, using MelodyFlow's regularized latent inversion. | |
You can access more control (longer generation, more models etc.) by clicking | |
the <a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true" | |
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" | |
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
(you will then need a paid GPU from HuggingFace). | |
This gradio demo can also be run locally (best with GPU). | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md) | |
for more details. | |
""") | |
interface.queue().launch(**launch_kwargs) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--listen', | |
type=str, | |
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', | |
help='IP to listen on for connections to Gradio', | |
) | |
parser.add_argument( | |
'--username', type=str, default='', help='Username for authentication' | |
) | |
parser.add_argument( | |
'--password', type=str, default='', help='Password for authentication' | |
) | |
parser.add_argument( | |
'--server_port', | |
type=int, | |
default=0, | |
help='Port to run the server listener on', | |
) | |
parser.add_argument( | |
'--inbrowser', action='store_true', help='Open in browser' | |
) | |
parser.add_argument( | |
'--share', action='store_true', help='Share the gradio UI' | |
) | |
args = parser.parse_args() | |
launch_kwargs = {} | |
launch_kwargs['server_name'] = args.listen | |
if args.username and args.password: | |
launch_kwargs['auth'] = (args.username, args.password) | |
if args.server_port: | |
launch_kwargs['server_port'] = args.server_port | |
if args.inbrowser: | |
launch_kwargs['inbrowser'] = args.inbrowser | |
if args.share: | |
launch_kwargs['share'] = args.share | |
logging.basicConfig(level=logging.INFO, stream=sys.stderr) | |
# Show the interface | |
if IS_HF_SPACE: | |
ui_hf(launch_kwargs) | |
else: | |
ui_local(launch_kwargs) | |