Spaces:
Build error
Build error
File size: 74,343 Bytes
94ada0b df44b7d 94ada0b df44b7d 94ada0b df44b7d 94ada0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from pickle import NONE
from re import X
from sndhdr import whathdr
import numpy as np
import math
import scipy.signal
import scipy.optimize
from numpy import core
from numpy.lib.arraysetops import isin
import torch
import torch.nn.functional as F
from torch.overrides import is_tensor_method_or_property
from einops import repeat
from dnnlib import camera, util, geometry
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_resample
from torch_utils.ops import upfirdn2d
from torch_utils.ops import bias_act
from torch_utils.ops import fma
from torch_utils.ops import filtered_lrelu
#----------------------------------------------------------------------------
@misc.profiled_function
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
@misc.profiled_function
def conv3d(x, w, up=1, down=1, padding=0, groups=1):
if up > 1:
x = F.interpolate(x, scale_factor=up, mode='trilinear', align_corners=True)
x = F.conv3d(x, w, padding=padding, groups=groups)
if down > 1:
x = F.interpolate(x, scale_factor=1./float(down), mode='trilinear', align_corners=True)
return x
#----------------------------------------------------------------------------
@misc.profiled_function
def modulated_conv2d(
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
styles, # Modulation coefficients of shape [batch_size, in_channels].
noise = None, # Optional noise tensor to add to the output activations.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
padding = 0, # Padding with respect to the upsampled image.
resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
demodulate = True, # Apply weight demodulation?
flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d) ????????
fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation?
mode = '2d', # modulated 2d/3d conv or MLP
**unused,
):
batch_size = x.shape[0]
if mode == '3d':
_, in_channels, kd, kh, kw = weight.shape
else:
_, in_channels, kh, kw = weight.shape
# Pre-normalize inputs to avoid FP16 overflow.
if x.dtype == torch.float16 and demodulate:
weight_sizes = in_channels * kh * kw if mode != '3d' else in_channels * kd * kh * kw
weight = weight * (1 / np.sqrt(weight_sizes) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
# Calculate per-sample weights and demodulation coefficients.
w = None
dcoefs = None
if mode != '3d':
rsizes, ssizes = [-1, 1, 1], [2, 3, 4]
else:
rsizes, ssizes = [-1, 1, 1, 1], [2, 3, 4, 5]
if demodulate or fused_modconv: # if not fused, skip
w = weight.unsqueeze(0) * styles.reshape(batch_size, 1, *rsizes)
if demodulate:
dcoefs = (w.square().sum(dim=ssizes) + 1e-8).rsqrt() # [NO]
if demodulate and fused_modconv:
w = w * dcoefs.reshape(batch_size, *rsizes, 1) # [NOIkk] (batch_size, out_channels, in_channels, kernel_size, kernel_size)
# Execute by scaling the activations before and after the convolution.
if not fused_modconv:
x = x * styles.to(x.dtype).reshape(batch_size, *rsizes)
if mode == '2d':
x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight)
elif mode == '3d':
x = conv3d(x=x, w=weight.to(x.dtype), up=up, down=down, padding=padding)
else:
raise NotImplementedError
if demodulate and noise is not None:
x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, *rsizes), noise.to(x.dtype)) # fused multiply add
elif demodulate:
x = x * dcoefs.to(x.dtype).reshape(batch_size, *rsizes)
elif noise is not None:
x = x.add_(noise.to(x.dtype))
return x
# Execute as one fused op using grouped convolution.
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
batch_size = int(batch_size)
x = x.reshape(1, -1, *x.shape[2:])
w = w.reshape(-1, *w.shape[2:])
if mode == '2d':
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight)
elif mode == '3d':
x = conv3d(x=x, w=w.to(x.dtype), up=up, down=down, padding=padding, groups=batch_size)
x = x.reshape(batch_size, -1, *x.shape[2:])
if noise is not None:
x = x.add_(noise)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class FullyConnectedLayer(torch.nn.Module):
def __init__(self,
in_features, # Number of input features.
out_features, # Number of output features.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 1, # Learning rate multiplier.
bias_init = 0, # Initial value for the additive bias.
):
super().__init__()
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x):
w = self.weight.to(x.dtype) * self.weight_gain
b = self.bias
if b is not None:
b = b.to(x.dtype)
if self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == 'linear' and b is not None:
x = torch.addmm(b.unsqueeze(0), x, w.t())
else:
x = x.matmul(w.t())
x = bias_act.bias_act(x, b, act=self.activation)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class Conv2dLayer(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output to +-X, None = disable clamping.
channels_last = False, # Expect the input to have memory_format=channels_last?
trainable = True, # Update the weights of this layer during training?
mode = '2d',
**unused
):
super().__init__()
self.activation = activation
self.up = up
self.down = down
self.conv_clamp = conv_clamp
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.padding = kernel_size // 2
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.mode = mode
weight_shape = [out_channels, in_channels, kernel_size, kernel_size]
if mode == '3d':
weight_shape += [kernel_size]
memory_format = torch.channels_last if channels_last else torch.contiguous_format
weight = torch.randn(weight_shape).to(memory_format=memory_format)
bias = torch.zeros([out_channels]) if bias else None
if trainable:
self.weight = torch.nn.Parameter(weight)
self.bias = torch.nn.Parameter(bias) if bias is not None else None
else:
self.register_buffer('weight', weight)
if bias is not None:
self.register_buffer('bias', bias)
else:
self.bias = None
def forward(self, x, gain=1):
w = self.weight * self.weight_gain
b = self.bias.to(x.dtype) if self.bias is not None else None
flip_weight = (self.up == 1) # slightly faster
if self.mode == '2d':
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight)
elif self.mode == '3d':
x = conv3d(x=x, w=w.to(x.dtype), up=self.up, down=self.down, padding=self.padding)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)
return x
# ---------------------------------------------------------------------------
@persistence.persistent_class
class Blur(torch.nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer('f', f)
def forward(self, x):
from kornia.filters import filter2d
f = self.f
f = f[None, None, :] * f [None, :, None]
return filter2d(x, f, normalized=True)
#----------------------------------------------------------------------------
@persistence.persistent_class
class MappingNetwork(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
w_dim, # Intermediate latent (W) dimensionality.
num_ws, # Number of intermediate latents to output, None = do not broadcast.
num_layers = 8, # Number of mapping layers.
embed_features = None, # Label embedding dimensionality, None = same as w_dim.
layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track.
**unused,
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.num_ws = num_ws
self.num_layers = num_layers
self.w_avg_beta = w_avg_beta
if embed_features is None:
embed_features = w_dim
if c_dim == 0:
embed_features = 0
if layer_features is None:
layer_features = w_dim
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
if c_dim > 0: # project label condition
self.embed = FullyConnectedLayer(c_dim, embed_features)
for idx in range(num_layers):
in_features = features_list[idx]
out_features = features_list[idx + 1]
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
setattr(self, f'fc{idx}', layer)
if num_ws is not None and w_avg_beta is not None:
self.register_buffer('w_avg', torch.zeros([w_dim]))
def forward(self, z=None, c=None, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False, styles=None, **unused_kwargs):
if styles is not None:
return styles
# Embed, normalize, and concat inputs.
x = None
with torch.autograd.profiler.record_function('input'):
if self.z_dim > 0:
misc.assert_shape(z, [None, self.z_dim])
x = normalize_2nd_moment(z.to(torch.float32)) # normalize z to shpere
if self.c_dim > 0:
misc.assert_shape(c, [None, self.c_dim])
y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
x = torch.cat([x, y], dim=1) if x is not None else y
# Main layers.
for idx in range(self.num_layers):
layer = getattr(self, f'fc{idx}')
x = layer(x)
# Update moving average of W.
if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
with torch.autograd.profiler.record_function('update_w_avg'):
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
# Broadcast.
if self.num_ws is not None:
with torch.autograd.profiler.record_function('broadcast'):
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
# Apply truncation.
if truncation_psi != 1:
with torch.autograd.profiler.record_function('truncate'):
assert self.w_avg_beta is not None
if self.num_ws is None or truncation_cutoff is None:
x = self.w_avg.lerp(x, truncation_psi)
else:
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisLayer(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this layer.
kernel_size = 3, # Convolution kernel size.
up = 1, # Integer upsampling factor.
use_noise = True, # Enable noise input?
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
channels_last = False, # Use channels_last format for the weights?
upsample_mode = 'default', # [default, bilinear, ray_comm, ray_attn, ray_penc]
use_group = False,
magnitude_ema_beta = -1, # -1 means not using magnitude ema
mode = '2d', # choose from 1d, 2d or 3d
**unused_kwargs
):
super().__init__()
self.resolution = resolution
self.up = up
self.use_noise = use_noise
self.activation = activation
self.conv_clamp = conv_clamp
self.upsample_mode = upsample_mode
self.mode = mode
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
if up == 2:
if 'pixelshuffle' in upsample_mode:
self.adapter = torch.nn.Sequential(
Conv2dLayer(out_channels, out_channels // 4, kernel_size=1, activation=activation),
Conv2dLayer(out_channels // 4, out_channels * 4, kernel_size=1, activation='linear'),
)
elif upsample_mode == 'liif':
from dnnlib.geometry import get_grids, local_ensemble
pi = get_grids(self.resolution//2, self.resolution//2, 'cpu', align=False).transpose(0,1)
po = get_grids(self.resolution, self.resolution, 'cpu', align=False).transpose(0,1)
diffs, coords, coeffs = local_ensemble(pi, po, self.resolution)
self.diffs = torch.nn.Parameter(diffs, requires_grad=False)
self.coords = torch.nn.Parameter(coords.float(), requires_grad=False)
self.coeffs = torch.nn.Parameter(coeffs, requires_grad=False)
add_dim = 2
self.adapter = torch.nn.Sequential(
Conv2dLayer(out_channels + add_dim, out_channels // 2, kernel_size=1, activation=activation),
Conv2dLayer(out_channels // 2, out_channels, kernel_size=1, activation='linear'),
)
elif 'nn_cat' in upsample_mode:
self.adapter = torch.nn.Sequential(
Conv2dLayer(out_channels * 2, out_channels // 4, kernel_size=1, activation=activation),
Conv2dLayer(out_channels // 4, out_channels, kernel_size=1, activation='linear'),
)
elif 'ada' in upsample_mode:
self.adapter = torch.nn.Sequential(
Conv2dLayer(out_channels, 8, kernel_size=1, activation=activation),
Conv2dLayer(8, out_channels, kernel_size=1, activation='linear')
)
self.adapter[1].weight.data.zero_()
if 'blur' in upsample_mode:
self.blur = Blur()
self.padding = kernel_size // 2
self.groups = 2 if use_group else 1
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
memory_format = torch.channels_last if channels_last else torch.contiguous_format
weight_sizes = [out_channels // self.groups, in_channels, kernel_size, kernel_size]
if self.mode == '3d':
weight_sizes += [kernel_size]
weight = torch.randn(weight_sizes).to(memory_format=memory_format)
self.weight = torch.nn.Parameter(weight)
if use_noise:
if self.mode == '2d':
noise_sizes = [resolution, resolution]
elif self.mode == '3d':
noise_sizes = [resolution, resolution, resolution]
else:
raise NotImplementedError('not support for MLP')
self.register_buffer('noise_const', torch.randn(noise_sizes)) # HACK: for safety reasons
self.noise_strength = torch.nn.Parameter(torch.zeros([]))
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
self.magnitude_ema_beta = magnitude_ema_beta
if magnitude_ema_beta > 0:
self.register_buffer('w_avg', torch.ones([])) # TODO: name for compitibality
def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1, skip_up=False, input_noise=None, **unused_kwargs):
assert noise_mode in ['random', 'const', 'none']
batch_size = x.size(0)
if (self.magnitude_ema_beta > 0):
if self.training: # updating EMA.
with torch.autograd.profiler.record_function('update_magnitude_ema'):
magnitude_cur = x.detach().to(torch.float32).square().mean()
self.w_avg.copy_(magnitude_cur.lerp(self.w_avg, self.magnitude_ema_beta))
input_gain = self.w_avg.rsqrt()
x = x * input_gain
styles = self.affine(w) # Batch x style_dim
if styles.size(0) < x.size(0): # for repeating
assert (x.size(0) // styles.size(0) * styles.size(0) == x.size(0))
styles = repeat(styles, 'b c -> (b s) c', s=x.size(0) // styles.size(0))
up = self.up if not skip_up else 1
use_default = (self.upsample_mode == 'default')
noise = None
resample_filter = None
if use_default and (up > 1):
resample_filter = self.resample_filter
if self.use_noise:
if input_noise is not None:
noise = input_noise * self.noise_strength
elif noise_mode == 'random':
noise_sizes = [x.shape[0], 1, up * x.shape[2], up * x.shape[3]]
if self.mode == '3d':
noise_sizes += [up * x.shape[4]]
noise = torch.randn(noise_sizes, device=x.device) * self.noise_strength
elif noise_mode == 'const':
noise = self.noise_const * self.noise_strength
if noise.shape[-1] < (up * x.shape[3]):
noise = repeat(noise, 'h w -> h (s w)', s=up*x.shape[3]//noise.shape[-1])
flip_weight = (up == 1) # slightly faster
x = modulated_conv2d(
x=x, weight=self.weight, styles=styles,
noise=noise if (use_default and not skip_up) else None,
up=up if use_default else 1,
padding=self.padding,
resample_filter=resample_filter,
flip_weight=flip_weight,
fused_modconv=fused_modconv,
groups=self.groups,
mode=self.mode
)
if (up == 2) and (not use_default):
resolution = x.size(-1) * 2
if 'bilinear' in self.upsample_mode:
x = F.interpolate(x, size=(resolution, resolution), mode='bilinear', align_corners=True)
elif 'nearest' in self.upsample_mode:
x = F.interpolate(x, size=(resolution, resolution), mode='nearest')
x = upfirdn2d.filter2d(x, self.resample_filter)
elif 'bicubic' in self.upsample_mode:
x = F.interpolate(x, size=(resolution, resolution), mode='bicubic', align_corners=True)
elif 'pixelshuffle' in self.upsample_mode: # does not have rotation invariance
x = F.interpolate(x, size=(resolution, resolution), mode='nearest') + torch.pixel_shuffle(self.adapter(x), 2)
if not 'noblur' in self.upsample_mode:
x = upfirdn2d.filter2d(x, self.resample_filter)
elif 'nn_cat' in self.upsample_mode:
x_pad = x.new_zeros(*x.size()[:2], x.size(-2)+2, x.size(-1)+2)
x_pad[...,1:-1,1:-1] = x
xl, xu, xd, xr = x_pad[..., 1:-1, :-2], x_pad[..., :-2, 1:-1], x_pad[..., 2:, 1:-1], x_pad[..., 1:-1, 2:]
x1, x2, x3, x4 = xl + xu, xu + xr, xl + xd, xr + xd
xb = torch.stack([x1, x2, x3, x4], 2) / 2
xb = torch.pixel_shuffle(xb.view(xb.size(0), -1, xb.size(-2), xb.size(-1)), 2)
xa = F.interpolate(x, size=(resolution, resolution), mode='nearest')
x = xa + self.adapter(torch.cat([xa, xb], 1))
if not 'noblur' in self.upsample_mode:
x = upfirdn2d.filter2d(x, self.resample_filter)
elif self.upsample_mode == 'liif': # this is an old version
x = torch.stack([x[..., self.coords[j,:,:,0].long(), self.coords[j,:,:,1].long()] for j in range(4)], 0)
d = self.diffs[:, None].type_as(x).repeat(1,batch_size,1,1,1).permute(0,1,4,2,3)
x = self.adapter(torch.cat([x, d.type_as(x)], 2).reshape(batch_size*4,-1,*x.size()[-2:]))
x = (x.reshape(4,batch_size,*x.size()[-3:]) * self.coeffs[:,None,None].type_as(x)).sum(0)
else:
raise NotImplementedError
if up == 2:
if 'ada' in self.upsample_mode:
x = x + self.adapter(x)
if 'blur' in self.upsample_mode:
x = self.blur(x)
if (noise is not None) and (not use_default) and (not skip_up):
x = x.add_(noise.type_as(x))
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisLayer3(torch.nn.Module):
"""copy from the stylegan3 codebase with minor changes"""
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
is_torgb, # Is this the final ToRGB layer?
is_critically_sampled, # Does this layer use critical sampling?
use_fp16, # Does this layer use FP16?
# Input & output specifications.
in_channels, # Number of input channels.
out_channels, # Number of output channels.
in_size, # Input spatial size: int or [width, height].
out_size, # Output spatial size: int or [width, height].
in_sampling_rate, # Input sampling rate (s).
out_sampling_rate, # Output sampling rate (s).
in_cutoff, # Input cutoff frequency (f_c).
out_cutoff, # Output cutoff frequency (f_c).
in_half_width, # Input transition band half-width (f_h).
out_half_width, # Output Transition band half-width (f_h).
# Hyperparameters.
kernel_size = 3, # Convolution kernel size. Ignored for final the ToRGB layer.
filter_size = 6, # Low-pass filter size relative to the lower resolution when up/downsampling.
lrelu_upsampling = 2, # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer.
use_radial_filters = False, # Use radially symmetric downsampling filter? Ignored for critically sampled layers.
conv_clamp = 256, # Clamp the output to [-X, +X], None = disable clamping.
magnitude_ema_beta = 0.999, # Decay rate for the moving average of input magnitudes.
**unused_kwargs,
):
super().__init__()
self.w_dim = w_dim
self.is_torgb = is_torgb
self.is_critically_sampled = is_critically_sampled
self.use_fp16 = use_fp16
self.in_channels = in_channels
self.out_channels = out_channels
self.in_size = np.broadcast_to(np.asarray(in_size), [2])
self.out_size = np.broadcast_to(np.asarray(out_size), [2])
self.in_sampling_rate = in_sampling_rate
self.out_sampling_rate = out_sampling_rate
self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (1 if is_torgb else lrelu_upsampling)
self.in_cutoff = in_cutoff
self.out_cutoff = out_cutoff
self.in_half_width = in_half_width
self.out_half_width = out_half_width
self.conv_kernel = 1 if is_torgb else kernel_size
self.conv_clamp = conv_clamp
self.magnitude_ema_beta = magnitude_ema_beta
# Setup parameters and buffers.
self.affine = FullyConnectedLayer(self.w_dim, self.in_channels, bias_init=1)
self.weight = torch.nn.Parameter(torch.randn([self.out_channels, self.in_channels, self.conv_kernel, self.conv_kernel]))
self.bias = torch.nn.Parameter(torch.zeros([self.out_channels]))
if magnitude_ema_beta > 0:
self.register_buffer('w_avg', torch.ones([]))
# Design upsampling filter.
self.up_factor = int(np.rint(self.tmp_sampling_rate / self.in_sampling_rate))
assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate
self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1
self.register_buffer('up_filter', self.design_lowpass_filter(
numtaps=self.up_taps, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate))
# Design downsampling filter.
self.down_factor = int(np.rint(self.tmp_sampling_rate / self.out_sampling_rate))
assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate
self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1
self.down_radial = use_radial_filters and not self.is_critically_sampled
self.register_buffer('down_filter', self.design_lowpass_filter(
numtaps=self.down_taps, cutoff=self.out_cutoff, width=self.out_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial))
# Compute padding.
pad_total = (self.out_size - 1) * self.down_factor + 1 # Desired output size before downsampling.
pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor # Input size after upsampling.
pad_total += self.up_taps + self.down_taps - 2 # Size reduction caused by the filters.
pad_lo = (pad_total + self.up_factor) // 2 # Shift sample locations according to the symmetric interpretation (Appendix C.3).
pad_hi = pad_total - pad_lo
self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])]
def forward(self, x, w, noise_mode='random', force_fp32=False, **unused_kwargs):
assert noise_mode in ['random', 'const', 'none'] # unused
misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])])
misc.assert_shape(w, [x.shape[0], self.w_dim])
# Track input magnitude.
if (self.magnitude_ema_beta > 0):
if self.training: # updating EMA.
with torch.autograd.profiler.record_function('update_magnitude_ema'):
magnitude_cur = x.detach().to(torch.float32).square().mean()
self.w_avg.copy_(magnitude_cur.lerp(self.w_avg, self.magnitude_ema_beta))
input_gain = self.w_avg.rsqrt()
x = x * input_gain
# Execute affine layer.
styles = self.affine(w)
if self.is_torgb:
weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2))
styles = styles * weight_gain
# Execute modulated conv2d.
dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32
x = modulated_conv2d(x=x.to(dtype), weight=self.weight, styles=styles, padding=self.conv_kernel-1, up=1, fused_modconv=True)
# Execute bias, filtered leaky ReLU, and clamping.
gain = 1 if self.is_torgb else np.sqrt(2)
slope = 1 if self.is_torgb else 0.2
x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype),
up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp)
# Ensure correct shape and dtype.
misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])])
assert x.dtype == dtype
return x
@staticmethod
def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
assert numtaps >= 1
# Identity filter.
if numtaps == 1:
return None
# Separable Kaiser low-pass filter.
if not radial:
f = scipy.signal.firwin(numtaps=numtaps, cutoff=cutoff, width=width, fs=fs)
return torch.as_tensor(f, dtype=torch.float32)
# Radially symmetric jinc-based filter.
x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
r = np.hypot(*np.meshgrid(x, x))
f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
beta = scipy.signal.kaiser_beta(scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
w = np.kaiser(numtaps, beta)
f *= np.outer(w, w)
f /= np.sum(f)
return torch.as_tensor(f, dtype=torch.float32)
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},',
f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},',
f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},',
f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},',
f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},',
f'in_size={list(self.in_size)}, out_size={list(self.out_size)},',
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}'])
#----------------------------------------------------------------------------
@persistence.persistent_class
class ToRGBLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, w_dim=0, kernel_size=1, conv_clamp=None, channels_last=False, mode='2d', **unused):
super().__init__()
self.conv_clamp = conv_clamp
self.mode = mode
weight_shape = [out_channels, in_channels, kernel_size, kernel_size]
if mode == '3d':
weight_shape += [kernel_size]
if w_dim > 0:
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
memory_format = torch.channels_last if channels_last else torch.contiguous_format
self.weight = torch.nn.Parameter(torch.randn(weight_shape).to(memory_format=memory_format))
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
self.weight_gain = 1 / np.sqrt(np.prod(weight_shape[1:]))
else:
assert kernel_size == 1, "does not support larger kernel sizes for now. used in NeRF"
assert mode != '3d', "does not support 3D convolution for now"
self.weight = torch.nn.Parameter(torch.Tensor(out_channels, in_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
self.weight_gain = 1.
# initialization
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, x, w=None, fused_modconv=True):
if w is not None:
styles = self.affine(w) * self.weight_gain
if x.size(0) > styles.size(0):
assert (x.size(0) // styles.size(0) * styles.size(0) == x.size(0))
styles = repeat(styles, 'b c -> (b s) c', s=x.size(0) // styles.size(0))
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv, mode=self.mode)
x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
else:
if x.ndim == 2:
x = F.linear(x, self.weight, self.bias)
else:
x = F.conv2d(x, self.weight[:,:,None,None], self.bias)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisBlock(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this block.
img_channels, # Number of output color channels.
is_last, # Is this the last block?
architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
use_fp16 = False, # Use FP16 for this block?
fp16_channels_last = False, # Use channels-last memory format with FP16?
use_single_layer = False, # use only one instead of two synthesis layer
disable_upsample = False,
**layer_kwargs, # Arguments for SynthesisLayer.
):
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.resolution = resolution
self.img_channels = img_channels
self.is_last = is_last
self.architecture = architecture
self.use_fp16 = use_fp16
self.channels_last = (use_fp16 and fp16_channels_last)
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.num_conv = 0
self.num_torgb = 0
self.groups = 1
self.use_single_layer = use_single_layer
self.margin = layer_kwargs.get('margin', 0)
self.upsample_mode = layer_kwargs.get('upsample_mode', 'default')
self.disable_upsample = disable_upsample
self.mode = layer_kwargs.get('mode', '2d')
if in_channels == 0:
const_sizes = [out_channels, resolution, resolution]
if self.mode == '3d':
const_sizes = const_sizes + [resolution]
self.const = torch.nn.Parameter(torch.randn(const_sizes))
if in_channels != 0:
self.conv0 = util.construct_class_by_name(
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer"),
in_channels=in_channels, out_channels=out_channels,
w_dim=w_dim, resolution=resolution,
up=2 if (not disable_upsample) else 1,
resample_filter=resample_filter, conv_clamp=conv_clamp,
channels_last=self.channels_last, **layer_kwargs)
self.num_conv += 1
if not self.use_single_layer:
self.conv1 = util.construct_class_by_name(
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer"),
in_channels=out_channels, out_channels=out_channels,
w_dim=w_dim, resolution=resolution,
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
self.num_conv += 1
if is_last or architecture == 'skip':
self.torgb = ToRGBLayer(
out_channels, img_channels, w_dim=w_dim,
conv_clamp=conv_clamp, channels_last=self.channels_last,
groups=self.groups, mode=self.mode)
self.num_torgb += 1
if in_channels != 0 and architecture == 'resnet':
self.skip = Conv2dLayer(
in_channels, out_channels, kernel_size=1, bias=False, up=2,
resample_filter=resample_filter,
channels_last=self.channels_last,
mode=self.mode)
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, add_on=None, block_noise=None, disable_rgb=False, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
dtype = torch.float16 if (self.use_fp16 and x.device.type == 'cuda') and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).expand(ws.shape[0], *x.size())
else:
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if add_on is not None:
add_on = add_on.to(dtype=dtype, memory_format=memory_format)
if self.in_channels == 0:
if not self.use_single_layer:
layer_kwargs['input_noise'] = block_noise[:,1:2] if block_noise is not None else None
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
layer_kwargs['input_noise'] = block_noise[:,0:1] if block_noise is not None else None
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
if not self.use_single_layer:
layer_kwargs['input_noise'] = block_noise[:,1:2] if block_noise is not None else None
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y.add_(x)
else:
layer_kwargs['input_noise'] = block_noise[:,0:1] if block_noise is not None else None
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
if not self.use_single_layer:
layer_kwargs['input_noise'] = block_noise[:,1:2] if block_noise is not None else None
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
# ToRGB.
if img is not None:
if img.size(-1) * 2 == x.size(-1):
if (self.upsample_mode == 'bilinear_all') or (self.upsample_mode == 'bilinear_ada'):
img = F.interpolate(img, scale_factor=2, mode='bilinear', align_corners=True)
else:
img = upfirdn2d.upsample2d(img, self.resample_filter) # this is upsampling. Not sure about details and why they do this..
elif img.size(-1) == x.size(-1):
pass
else:
raise NotImplementedError
if self.is_last or self.architecture == 'skip':
if not disable_rgb:
y = x if add_on is None else x + add_on
y = self.torgb(y, next(w_iter), fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
else:
img = None
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisBlock3(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this block.
img_channels, # Number of output color channels.
block_id,
stylegan3_hyperam,
use_fp16 = False, # Use FP16 for this block?
**layer_kwargs, # Arguments for SynthesisLayer.
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.resolution = resolution
self.img_channels = img_channels
self.num_conv = 0
self.num_torgb = 0
self.use_fp16 = use_fp16
is_critically_sampled = block_id == (len(stylegan3_hyperam['sampling_rates'][:-1]) // 2 - 1)
sizes, sampling_rates, cutoffs, half_widths = \
stylegan3_hyperam['sizes'], stylegan3_hyperam['sampling_rates'], \
stylegan3_hyperam['cutoffs'], stylegan3_hyperam['half_widths']
# each block has two layer
prev = max(block_id * 2 - 1, 0)
curr = block_id * 2
self.conv0 = util.construct_class_by_name(
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer3"),
w_dim=self.w_dim,
is_torgb=False,
is_critically_sampled=is_critically_sampled,
use_fp16=use_fp16,
in_channels=in_channels,
out_channels=out_channels,
in_size=int(sizes[prev]),
out_size=int(sizes[curr]),
in_sampling_rate=int(sampling_rates[prev]),
out_sampling_rate=int(sampling_rates[curr]),
in_cutoff=cutoffs[prev],
out_cutoff=cutoffs[curr],
in_half_width=half_widths[prev],
out_half_width=half_widths[curr],
use_radial_filters=True,
**layer_kwargs)
self.num_conv += 1
prev = block_id * 2
curr = block_id * 2 + 1
self.conv1 = util.construct_class_by_name(
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer3"),
w_dim=self.w_dim,
is_torgb=False,
is_critically_sampled=is_critically_sampled,
use_fp16=use_fp16,
in_channels=out_channels,
out_channels=out_channels,
in_size=int(sizes[prev]),
out_size=int(sizes[curr]),
in_sampling_rate=int(sampling_rates[prev]),
out_sampling_rate=int(sampling_rates[curr]),
in_cutoff=cutoffs[prev],
out_cutoff=cutoffs[curr],
in_half_width=half_widths[prev],
out_half_width=half_widths[curr],
use_radial_filters=True,
**layer_kwargs)
self.num_conv += 1
# toRGB layer (used for progressive growing)
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim)
self.num_torgb += 1
def forward(self, x, img, ws, force_fp32=False, add_on=None, disable_rgb=False, **layer_kwargs):
w_iter = iter(ws.unbind(dim=1))
dtype = torch.float16 if (self.use_fp16 and x.device.type == 'cuda') and not force_fp32 else torch.float32
memory_format = torch.contiguous_format
# Main layers.
x = x.to(dtype=dtype, memory_format=memory_format)
if add_on is not None:
add_on = add_on.to(dtype=dtype, memory_format=memory_format)
x = self.conv0(x, next(w_iter), **layer_kwargs)
x = self.conv1(x, next(w_iter), **layer_kwargs)
assert img is None, "currently not support."
if not disable_rgb:
y = x if add_on is None else x + add_on
y = self.torgb(y, next(w_iter), fused_modconv=True)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisNetwork(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels, # Number of color channels.
channel_base = 1, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 0, # Use FP16 for the N highest resolutions.
**block_kwargs, # Arguments for SynthesisBlock.
):
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
super().__init__()
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(2, self.img_resolution_log2 + 1)]
channel_base = int(channel_base * 32768)
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
self.channels_dict = channels_dict
self.num_ws = 0
for res in self.block_resolutions:
in_channels = channels_dict[res // 2] if res > 4 else 0
out_channels = channels_dict[res]
use_fp16 = (res >= fp16_resolution)
is_last = (res == self.img_resolution)
block = util.construct_class_by_name(
class_name=block_kwargs.get('block_name', "training.networks.SynthesisBlock"),
in_channels=in_channels, out_channels=out_channels, w_dim=w_dim, resolution=res,
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs)
self.num_ws += block.num_conv
if is_last:
self.num_ws += block.num_torgb
setattr(self, f'b{res}', block)
def forward(self, ws, **block_kwargs):
block_ws = []
# this part is to slice the style matrices (W) to each layer (conv/RGB)
with torch.autograd.profiler.record_function('split_ws'):
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += block.num_conv
x = img = None
for res, cur_ws in zip(self.block_resolutions, block_ws):
block = getattr(self, f'b{res}')
x, img = block(x, img, cur_ws, **block_kwargs)
return img
def get_current_resolution(self):
return [self.img_resolution] # For compitibility
#----------------------------------------------------------------------------
@persistence.persistent_class
class Generator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
mapping_kwargs = {}, # Arguments for MappingNetwork.
synthesis_kwargs = {}, # Arguments for SynthesisNetwork.
encoder_kwargs = {}, # Arguments for Encoder (optional)
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
self.synthesis = util.construct_class_by_name(
class_name=synthesis_kwargs.get('module_name', "training.networks.SynthesisNetwork"),
w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs)
self.num_ws = self.synthesis.num_ws
self.mapping = None
self.encoder = None
if len(mapping_kwargs) > 0: # Use mapping network
self.mapping = util.construct_class_by_name(
class_name=mapping_kwargs.get('module_name', "training.networks.MappingNetwork"),
z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
if len(encoder_kwargs) > 0: # Use Image-Encoder
encoder_kwargs['model_kwargs'].update({'num_ws': self.num_ws, 'w_dim': self.w_dim})
self.encoder = util.construct_class_by_name(
img_resolution=img_resolution,
img_channels=img_channels,
**encoder_kwargs)
def forward(self, z=None, c=None, styles=None, truncation_psi=1, truncation_cutoff=None, img=None, **synthesis_kwargs):
if styles is None:
assert z is not None
if (self.encoder is not None) and (img is not None): #TODO: debug
outputs = self.encoder(img)
ws = outputs['ws']
if ('camera' in outputs) and ('camera_mode' not in synthesis_kwargs):
synthesis_kwargs['camera_RT'] = outputs['camera']
else:
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, **synthesis_kwargs)
else:
ws = styles
img = self.synthesis(ws, **synthesis_kwargs)
return img
def get_final_output(self, *args, **kwargs):
img = self.forward(*args, **kwargs)
if isinstance(img, list):
return img[-1]
elif isinstance(img, dict):
return img['img']
return img
#----------------------------------------------------------------------------
@persistence.persistent_class
class DiscriminatorBlock(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels, 0 = first block.
tmp_channels, # Number of intermediate channels.
out_channels, # Number of output channels.
resolution, # Resolution of this block.
img_channels, # Number of input color channels.
first_layer_idx, # Index of the first layer.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
use_fp16 = False, # Use FP16 for this block?
fp16_channels_last = False, # Use channels-last memory format with FP16?
freeze_layers = 0, # Freeze-D: Number of layers to freeze.
):
assert in_channels in [0, tmp_channels]
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.in_channels = in_channels
self.resolution = resolution
self.img_channels = img_channels
self.first_layer_idx = first_layer_idx
self.architecture = architecture
self.use_fp16 = use_fp16
self.channels_last = (use_fp16 and fp16_channels_last)
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.num_layers = 0
def trainable_gen():
while True:
layer_idx = self.first_layer_idx + self.num_layers
trainable = (layer_idx >= freeze_layers)
self.num_layers += 1
yield trainable
trainable_iter = trainable_gen()
if in_channels == 0 or architecture == 'skip':
self.fromrgb = Conv2dLayer(img_channels, tmp_channels, kernel_size=1, activation=activation,
trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last)
self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation,
trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last)
self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2,
trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last)
if architecture == 'resnet':
self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2,
trainable=next(trainable_iter), resample_filter=resample_filter, channels_last=self.channels_last)
def forward(self, x, img, force_fp32=False, downsampler=None):
dtype = torch.float16 if (self.use_fp16 and x.device.type == 'cuda') and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
# Input.
if x is not None:
misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution])
x = x.to(dtype=dtype, memory_format=memory_format)
# FromRGB.
if self.in_channels == 0 or self.architecture == 'skip':
misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution])
img = img.to(dtype=dtype, memory_format=memory_format)
y = self.fromrgb(img)
x = x + y if x is not None else y
if self.architecture != 'skip':
img = None
elif downsampler is not None:
img = downsampler(img, 2)
else:
img = upfirdn2d.downsample2d(img, self.resample_filter)
# Main layers.
if self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x)
x = self.conv1(x, gain=np.sqrt(0.5))
x = y.add_(x)
else:
x = self.conv0(x)
x = self.conv1(x)
assert x.dtype == dtype
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class MinibatchStdLayer(torch.nn.Module):
def __init__(self, group_size, num_channels=1):
super().__init__()
self.group_size = group_size
self.num_channels = num_channels
def forward(self, x):
N, C, H, W = x.shape
with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants
G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N
F = self.num_channels
c = C // F
y = x.reshape(G, -1, F, c, H, W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group.
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group.
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group.
y = y.mean(dim=[2,3,4]) # [nF] Take average over channels and pixels.
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions.
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels.
x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels.
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class DiscriminatorEpilogue(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels.
cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label.
resolution, # Resolution of this block.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
final_channels = 1, # for classification it is always 1.
):
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.in_channels = in_channels
self.final_channels = final_channels
self.cmap_dim = cmap_dim
self.resolution = resolution
self.img_channels = img_channels
self.architecture = architecture
if architecture == 'skip':
self.fromrgb = Conv2dLayer(img_channels, in_channels, kernel_size=1, activation=activation)
self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None
self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation, conv_clamp=conv_clamp)
self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), in_channels, activation=activation)
self.out = FullyConnectedLayer(in_channels, final_channels if cmap_dim == 0 else cmap_dim)
def forward(self, x, img, cmap, force_fp32=False):
misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) # [NCHW]
_ = force_fp32 # unused
dtype = torch.float32
memory_format = torch.contiguous_format
# FromRGB.
x = x.to(dtype=dtype, memory_format=memory_format)
if self.architecture == 'skip':
misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution])
img = img.to(dtype=dtype, memory_format=memory_format)
x = x + self.fromrgb(img)
# Main layers.
if self.mbstd is not None:
x = self.mbstd(x)
x = self.conv(x)
x = self.fc(x.flatten(1))
x = self.out(x)
# Conditioning.
if self.cmap_dim > 0:
if not isinstance(cmap, list):
cmap = [cmap] # in case of multiple conditions. a trick (TODO)
x = [(x * c).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) for c in cmap]
x = sum(x) / len(cmap)
assert x.dtype == dtype
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class Discriminator(torch.nn.Module): # The original StyleGAN2 discriminator
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 0, # Use FP16 for the N highest resolutions.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
def forward(self, img, c, **block_kwargs):
x = None
if isinstance(img, dict):
img = img['img']
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
#----------------------------------------------------------------------------
# encoders maybe used for inversion (not cleaned)
@persistence.persistent_class
class EncoderResBlock(torch.nn.Module):
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = Conv2dLayer(in_channel, in_channel, 3, activation='lrelu')
self.conv2 = Conv2dLayer(in_channel, out_channel, 3, down=2, activation='lrelu')
self.skip = Conv2dLayer(in_channel, out_channel, 1, down=2, activation='linear', bias=False)
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
skip = self.skip(input)
out = (out + skip) / math.sqrt(2)
return out
@persistence.persistent_class
class EqualConv2d(torch.nn.Module):
def __init__(
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
):
super().__init__()
new_scale = 1.0
self.weight = torch.nn.Parameter(
torch.randn(out_channel, in_channel, kernel_size, kernel_size) * new_scale
)
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
if bias:
self.bias = torch.nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
out = F.conv2d(
input,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
)
@persistence.persistent_class
class Encoder(torch.nn.Module):
def __init__(self, size, n_latents, w_dim=512, add_dim=0, **unused):
super().__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256,
128: 128,
256: 64,
512: 32,
1024: 16
}
self.w_dim = w_dim
self.add_dim = add_dim
log_size = int(math.log(size, 2))
self.n_latents = n_latents
convs = [Conv2dLayer(3, channels[size], 1)]
in_channel = channels[size]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
convs.append(EncoderResBlock(in_channel, out_channel))
in_channel = out_channel
self.convs = torch.nn.Sequential(*convs)
self.projector = EqualConv2d(in_channel, self.n_latents*self.w_dim + add_dim, 4, padding=0, bias=False)
def forward(self, input):
out = self.convs(input)
out = self.projector(out)
pws, pcm = out[:, :-2], out[:, -2:]
pws = pws.view(len(input), self.n_latents, self.w_dim)
pcm = pcm.view(len(input), self.add_dim)
return pws, pcm
@persistence.persistent_class
class ResNetEncoder(torch.nn.Module):
def __init__(self):
super().__init__()
import torchvision
resnet_net = torchvision.models.resnet18(pretrained=True)
modules = list(resnet_net.children())[:-1]
self.convs = torch.nn.Sequential(*modules)
self.requires_grad_(True)
self.train()
def preprocess_tensor(self, x):
x = F.interpolate(x, size=(224, 224), mode='bicubic', align_corners=False)
return x
def forward(self, input):
out = self.convs(self.preprocess_tensor(input))
return out[:, :, 0, 0]
@persistence.persistent_class
class CLIPEncoder(torch.nn.Module):
def __init__(self):
super().__init__()
import clip
clip_net, _ = clip.load('ViT-B/32', device='cpu', jit=False)
self.encoder = clip_net.visual
for p in self.encoder.parameters():
p.requires_grad_(True)
def preprocess_tensor(self, x):
import PIL.Image
import torchvision.transforms.functional as TF
x = x * 0.5 + 0.5 # mapping to 0~1
x = TF.resize(x, size=224, interpolation=PIL.Image.BICUBIC)
x = TF.normalize(x, (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
return x
def forward(self, input):
out = self.encoder(self.preprocess_tensor(input))
return out
# --------------------------------------------------------------------------------------------------- #
# VolumeGAN thanks https://gist.github.com/justimyhxu/a96f5ac25480d733f3151adb8142d706
@persistence.persistent_class
class InstanceNormLayer3d(torch.nn.Module):
"""Implements instance normalization layer."""
def __init__(self, num_features, epsilon=1e-8, affine=False):
super().__init__()
self.eps = epsilon
self.affine = affine
if self.affine:
self.weight = torch.nn.Parameter(torch.Tensor(1, num_features,1,1,1))
self.bias = torch.nn.Parameter(torch.Tensor(1, num_features,1,1,1))
self.weight.data.uniform_()
self.bias.data.zero_()
def forward(self, x, weight=None, bias=None):
x = x - torch.mean(x, dim=[2, 3, 4], keepdim=True)
norm = torch.sqrt(
torch.mean(x**2, dim=[2, 3, 4], keepdim=True) + self.eps)
x = x / norm
isnot_input_none = weight is not None and bias is not None
assert (isnot_input_none and not self.affine) or (not isnot_input_none and self.affine)
if self.affine:
x = x*self.weight + self.bias
else:
x = x*weight + bias
return x
@persistence.persistent_class
class FeatureVolume(torch.nn.Module):
def __init__(
self,
feat_res=32,
init_res=4,
base_channels=256,
output_channels=32,
z_dim=256,
use_mapping=True,
**kwargs
):
super().__init__()
self.num_stages = int(np.log2(feat_res // init_res)) + 1
self.use_mapping = use_mapping
self.const = nn.Parameter(
torch.ones(1, base_channels, init_res, init_res, init_res))
inplanes = base_channels
outplanes = base_channels
self.stage_channels = []
for i in range(self.num_stages):
conv = nn.Conv3d(inplanes,
outplanes,
kernel_size=(3, 3, 3),
padding=(1, 1, 1))
self.stage_channels.append(outplanes)
self.add_module(f'layer{i}', conv)
instance_norm = InstanceNormLayer3d(num_features=outplanes, affine=not use_mapping)
self.add_module(f'instance_norm{i}', instance_norm)
inplanes = outplanes
outplanes = max(outplanes // 2, output_channels)
if i == self.num_stages - 1:
outplanes = output_channels
if self.use_mapping:
self.mapping_network = CustomMappingNetwork(
z_dim, 256,
sum(self.stage_channels) * 2)
self.upsample = UpsamplingLayer()
self.lrelu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, z, **kwargs):
if self.use_mapping:
scales, shifts, style = self.mapping_network(z)
x = self.const.repeat(z.shape[0], 1, 1, 1, 1)
for idx in range(self.num_stages):
if idx != 0:
x = self.upsample(x)
conv_layer = self.__getattr__(f'layer{idx}')
x = conv_layer(x)
instance_norm = self.__getattr__(f'instance_norm{idx}')
if self.use_mapping:
scale = scales[:, sum(self.stage_channels[:idx]):sum(self.stage_channels[:idx + 1])]
shift = shifts[:, sum(self.stage_channels[:idx]):sum(self.stage_channels[:idx + 1])]
scale = scale.view(scale.shape + (1, 1, 1))
shift = shift.view(shift.shape + (1, 1, 1))
else:
scale, shift = None, None
x = instance_norm(x, weight=scale, bias=shift)
x = self.lrelu(x)
return x |