File size: 12,214 Bytes
b869a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import io
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
import tempfile

class Config:
    ASSETS_DIR = os.path.join(os.path.dirname(__file__), 'assets')
    CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
    CHECKPOINTS = {
        "0.3b": "sapiens_0.3b_render_people_epoch_100_torchscript.pt2",
        "0.6b": "sapiens_0.6b_render_people_epoch_70_torchscript.pt2",
        "1b": "sapiens_1b_render_people_epoch_88_torchscript.pt2",
        "2b": "sapiens_2b_render_people_epoch_25_torchscript.pt2",
    }
    SEG_CHECKPOINTS = {
        "fg-bg-1b (recommended)": "sapiens_1b_seg_foreground_epoch_8_torchscript.pt2",
        "no-bg-removal": None,
        "part-seg-1b": "sapiens_1b_goliath_best_goliath_mIoU_7994_epoch_151_torchscript.pt2",
    }

class ModelManager:
    @staticmethod
    def load_model(checkpoint_name: str):
        if checkpoint_name is None:
            return None
        checkpoint_path = os.path.join(Config.CHECKPOINTS_DIR, checkpoint_name)
        model = torch.jit.load(checkpoint_path)
        model.eval()
        model.to("cuda")
        return model

    @staticmethod
    @torch.inference_mode()
    def run_model(model, input_tensor, height, width):
        output = model(input_tensor)
        return F.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)

class ImageProcessor:
    def __init__(self):
        self.transform_fn = transforms.Compose([
            transforms.Resize((1024, 768)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[123.5/255, 116.5/255, 103.5/255], std=[58.5/255, 57.0/255, 57.5/255]),
        ])

    @spaces.GPU
    def process_image(self, image: Image.Image, depth_model_name: str, seg_model_name: str):
        depth_model = ModelManager.load_model(Config.CHECKPOINTS[depth_model_name])
        input_tensor = self.transform_fn(image).unsqueeze(0).to("cuda")
        depth_output = ModelManager.run_model(depth_model, input_tensor, image.height, image.width)
        depth_map = depth_output.squeeze().cpu().numpy()

        if seg_model_name != "no-bg-removal":
            seg_model = ModelManager.load_model(Config.SEG_CHECKPOINTS[seg_model_name])
            seg_output = ModelManager.run_model(seg_model, input_tensor, image.height, image.width)
            seg_mask = (seg_output.argmax(dim=1) > 0).float().cpu().numpy()[0]
            depth_map[seg_mask == 0] = np.nan
        
        depth_colored = self.colorize_depth_map(depth_map)
        npy_path = tempfile.mktemp(suffix='.npy')
        np.save(npy_path, depth_map)

        return Image.fromarray(depth_colored), npy_path

    @staticmethod
    def colorize_depth_map(depth_map):
        depth_foreground = depth_map[~np.isnan(depth_map)]
        if len(depth_foreground) > 0:
            min_val, max_val = np.nanmin(depth_foreground), np.nanmax(depth_foreground)
            depth_normalized = (depth_map - min_val) / (max_val - min_val)
            depth_normalized = 1 - depth_normalized
            depth_normalized = np.nan_to_num(depth_normalized, nan=0)
            cmap = plt.get_cmap('inferno')
            depth_colored = (cmap(depth_normalized) * 255).astype(np.uint8)[:, :, :3]
        else:
            depth_colored = np.zeros((depth_map.shape[0], depth_map.shape[1], 3), dtype=np.uint8)
        return depth_colored

class GradioInterface:
    def __init__(self):
        self.image_processor = ImageProcessor()

    def create_interface(self):
        app_styles = """
        <style>
            /* Global Styles */
            body, #root {
                font-family: Helvetica, Arial, sans-serif;
                background-color: #1a1a1a;
                color: #fafafa;
            }

            /* Header Styles */
            .app-header {
                background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
                padding: 24px;
                border-radius: 8px;
                margin-bottom: 24px;
                text-align: center;
            }

            .app-title {
                font-size: 48px;
                margin: 0;
                color: #fafafa;
            }

            .app-subtitle {
                font-size: 24px;
                margin: 8px 0 16px;
                color: #fafafa;
            }

            .app-description {
                font-size: 16px;
                line-height: 1.6;
                opacity: 0.8;
                margin-bottom: 24px;
            }

            /* Button Styles */
            .publication-links {
                display: flex;
                justify-content: center;
                flex-wrap: wrap;
                gap: 8px;
                margin-bottom: 16px;
            }

            .publication-link {
                display: inline-flex;
                align-items: center;
                padding: 8px 16px;
                background-color: #333;
                color: #fff !important;
                text-decoration: none !important;
                border-radius: 20px;
                font-size: 14px;
                transition: background-color 0.3s;
            }

            .publication-link:hover {
                background-color: #555;
            }

            .publication-link i {
                margin-right: 8px;
            }

            /* Content Styles */
            .content-container {
                background-color: #2a2a2a;
                border-radius: 8px;
                padding: 24px;
                margin-bottom: 24px;
            }

            /* Image Styles */
            .image-preview img {
                max-width: 512px;
                max-height: 512px;  
                margin: 0 auto;
                border-radius: 4px;
                display: block;
                object-fit: contain;  
            }

            /* Control Styles */
            .control-panel {
                background-color: #333;
                padding: 16px;
                border-radius: 8px;
                margin-top: 16px;
            }

            /* Gradio Component Overrides */
            .gr-button {
                background-color: #4a4a4a;
                color: #fff;
                border: none;
                border-radius: 4px;
                padding: 8px 16px;
                cursor: pointer;
                transition: background-color 0.3s;
            }

            .gr-button:hover {
                background-color: #5a5a5a;
            }

            .gr-input, .gr-dropdown {
                background-color: #3a3a3a;
                color: #fff;
                border: 1px solid #4a4a4a;
                border-radius: 4px;
                padding: 8px;
            }

            .gr-form {
                background-color: transparent;
            }

            .gr-panel {
                border: none;
                background-color: transparent;
            }

            /* Override any conflicting styles from Bulma */
            .button.is-normal.is-rounded.is-dark {
                color: #fff !important;
                text-decoration: none !important;
            }
        </style>
        """

        header_html = f"""
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css">
        <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
        {app_styles}
        <div class="app-header">
            <h1 class="app-title">Sapiens: Depth Estimation</h1>
            <h2 class="app-subtitle">ECCV 2024 (Oral)</h2>
            <p class="app-description">
                Meta presents Sapiens, foundation models for human tasks pretrained on 300 million human images. 
                This demo showcases the finetuned depth model.
            </p>
            <div class="publication-links">
                <a href="https://arxiv.org/abs/2408.12569" class="publication-link">
                    <i class="fas fa-file-pdf"></i>arXiv
                </a>
                <a href="https://github.com/facebookresearch/sapiens" class="publication-link">
                    <i class="fab fa-github"></i>Code
                </a>
                <a href="https://about.meta.com/realitylabs/codecavatars/sapiens/" class="publication-link">
                    <i class="fas fa-globe"></i>Meta
                </a>
                <a href="https://rawalkhirodkar.github.io/sapiens" class="publication-link">
                    <i class="fas fa-chart-bar"></i>Results
                </a>
            </div>
            <div class="publication-links">
                <a href="https://huggingface.co/spaces/facebook/sapiens_pose" class="publication-link">
                    <i class="fas fa-user"></i>Demo-Pose
                </a>
                <a href="https://huggingface.co/spaces/facebook/sapiens_seg" class="publication-link">
                    <i class="fas fa-puzzle-piece"></i>Demo-Seg
                </a>
                <a href="https://huggingface.co/spaces/facebook/sapiens_depth" class="publication-link">
                    <i class="fas fa-cube"></i>Demo-Depth
                </a>
                <a href="https://huggingface.co/spaces/facebook/sapiens_normal" class="publication-link">
                    <i class="fas fa-vector-square"></i>Demo-Normal
                </a>
            </div>
        </div>
        """

        js_func = """
        function refresh() {
            const url = new URL(window.location);
            if (url.searchParams.get('__theme') !== 'dark') {
                url.searchParams.set('__theme', 'dark');
                window.location.href = url.href;
            }
        }
        """

        def process_image(image, depth_model_name, seg_model_name):
            result, npy_path = self.image_processor.process_image(image, depth_model_name, seg_model_name)
            return result, npy_path

        with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
            gr.HTML(header_html)
            with gr.Row(elem_classes="content-container"):
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
                    with gr.Row(elem_classes="control-panel"):
                        depth_model_name = gr.Dropdown(
                            label="Depth Model Size",
                            choices=list(Config.CHECKPOINTS.keys()),
                            value="1b",
                        )
                        seg_model_name = gr.Dropdown(
                            label="Background Removal Model",
                            choices=list(Config.SEG_CHECKPOINTS.keys()),
                            value="fg-bg-1b (recommended)",
                        )
                    example_model = gr.Examples(
                        inputs=input_image,
                        examples_per_page=14,
                        examples=[
                            os.path.join(Config.ASSETS_DIR, "images", img)
                            for img in os.listdir(os.path.join(Config.ASSETS_DIR, "images"))
                        ],
                    )
                with gr.Column():
                    result_image = gr.Image(label="Depth Estimation Result", type="pil", elem_classes="image-preview")
                    npy_output = gr.File(label="Output (.npy). Note: Background depth is NaN.")
                    run_button = gr.Button("Run", elem_classes="gr-button")

            run_button.click(
                fn=process_image,
                inputs=[input_image, depth_model_name, seg_model_name],
                outputs=[result_image, npy_output],
            )

        return demo

def main():
    if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

    interface = GradioInterface()
    demo = interface.create_interface()
    demo.launch(share=False)

if __name__ == "__main__":
    main()