Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,214 Bytes
b869a3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import os
import io
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
import tempfile
class Config:
ASSETS_DIR = os.path.join(os.path.dirname(__file__), 'assets')
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
CHECKPOINTS = {
"0.3b": "sapiens_0.3b_render_people_epoch_100_torchscript.pt2",
"0.6b": "sapiens_0.6b_render_people_epoch_70_torchscript.pt2",
"1b": "sapiens_1b_render_people_epoch_88_torchscript.pt2",
"2b": "sapiens_2b_render_people_epoch_25_torchscript.pt2",
}
SEG_CHECKPOINTS = {
"fg-bg-1b (recommended)": "sapiens_1b_seg_foreground_epoch_8_torchscript.pt2",
"no-bg-removal": None,
"part-seg-1b": "sapiens_1b_goliath_best_goliath_mIoU_7994_epoch_151_torchscript.pt2",
}
class ModelManager:
@staticmethod
def load_model(checkpoint_name: str):
if checkpoint_name is None:
return None
checkpoint_path = os.path.join(Config.CHECKPOINTS_DIR, checkpoint_name)
model = torch.jit.load(checkpoint_path)
model.eval()
model.to("cuda")
return model
@staticmethod
@torch.inference_mode()
def run_model(model, input_tensor, height, width):
output = model(input_tensor)
return F.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
class ImageProcessor:
def __init__(self):
self.transform_fn = transforms.Compose([
transforms.Resize((1024, 768)),
transforms.ToTensor(),
transforms.Normalize(mean=[123.5/255, 116.5/255, 103.5/255], std=[58.5/255, 57.0/255, 57.5/255]),
])
@spaces.GPU
def process_image(self, image: Image.Image, depth_model_name: str, seg_model_name: str):
depth_model = ModelManager.load_model(Config.CHECKPOINTS[depth_model_name])
input_tensor = self.transform_fn(image).unsqueeze(0).to("cuda")
depth_output = ModelManager.run_model(depth_model, input_tensor, image.height, image.width)
depth_map = depth_output.squeeze().cpu().numpy()
if seg_model_name != "no-bg-removal":
seg_model = ModelManager.load_model(Config.SEG_CHECKPOINTS[seg_model_name])
seg_output = ModelManager.run_model(seg_model, input_tensor, image.height, image.width)
seg_mask = (seg_output.argmax(dim=1) > 0).float().cpu().numpy()[0]
depth_map[seg_mask == 0] = np.nan
depth_colored = self.colorize_depth_map(depth_map)
npy_path = tempfile.mktemp(suffix='.npy')
np.save(npy_path, depth_map)
return Image.fromarray(depth_colored), npy_path
@staticmethod
def colorize_depth_map(depth_map):
depth_foreground = depth_map[~np.isnan(depth_map)]
if len(depth_foreground) > 0:
min_val, max_val = np.nanmin(depth_foreground), np.nanmax(depth_foreground)
depth_normalized = (depth_map - min_val) / (max_val - min_val)
depth_normalized = 1 - depth_normalized
depth_normalized = np.nan_to_num(depth_normalized, nan=0)
cmap = plt.get_cmap('inferno')
depth_colored = (cmap(depth_normalized) * 255).astype(np.uint8)[:, :, :3]
else:
depth_colored = np.zeros((depth_map.shape[0], depth_map.shape[1], 3), dtype=np.uint8)
return depth_colored
class GradioInterface:
def __init__(self):
self.image_processor = ImageProcessor()
def create_interface(self):
app_styles = """
<style>
/* Global Styles */
body, #root {
font-family: Helvetica, Arial, sans-serif;
background-color: #1a1a1a;
color: #fafafa;
}
/* Header Styles */
.app-header {
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
padding: 24px;
border-radius: 8px;
margin-bottom: 24px;
text-align: center;
}
.app-title {
font-size: 48px;
margin: 0;
color: #fafafa;
}
.app-subtitle {
font-size: 24px;
margin: 8px 0 16px;
color: #fafafa;
}
.app-description {
font-size: 16px;
line-height: 1.6;
opacity: 0.8;
margin-bottom: 24px;
}
/* Button Styles */
.publication-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 16px;
}
.publication-link {
display: inline-flex;
align-items: center;
padding: 8px 16px;
background-color: #333;
color: #fff !important;
text-decoration: none !important;
border-radius: 20px;
font-size: 14px;
transition: background-color 0.3s;
}
.publication-link:hover {
background-color: #555;
}
.publication-link i {
margin-right: 8px;
}
/* Content Styles */
.content-container {
background-color: #2a2a2a;
border-radius: 8px;
padding: 24px;
margin-bottom: 24px;
}
/* Image Styles */
.image-preview img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 4px;
display: block;
object-fit: contain;
}
/* Control Styles */
.control-panel {
background-color: #333;
padding: 16px;
border-radius: 8px;
margin-top: 16px;
}
/* Gradio Component Overrides */
.gr-button {
background-color: #4a4a4a;
color: #fff;
border: none;
border-radius: 4px;
padding: 8px 16px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #5a5a5a;
}
.gr-input, .gr-dropdown {
background-color: #3a3a3a;
color: #fff;
border: 1px solid #4a4a4a;
border-radius: 4px;
padding: 8px;
}
.gr-form {
background-color: transparent;
}
.gr-panel {
border: none;
background-color: transparent;
}
/* Override any conflicting styles from Bulma */
.button.is-normal.is-rounded.is-dark {
color: #fff !important;
text-decoration: none !important;
}
</style>
"""
header_html = f"""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
{app_styles}
<div class="app-header">
<h1 class="app-title">Sapiens: Depth Estimation</h1>
<h2 class="app-subtitle">ECCV 2024 (Oral)</h2>
<p class="app-description">
Meta presents Sapiens, foundation models for human tasks pretrained on 300 million human images.
This demo showcases the finetuned depth model.
</p>
<div class="publication-links">
<a href="https://arxiv.org/abs/2408.12569" class="publication-link">
<i class="fas fa-file-pdf"></i>arXiv
</a>
<a href="https://github.com/facebookresearch/sapiens" class="publication-link">
<i class="fab fa-github"></i>Code
</a>
<a href="https://about.meta.com/realitylabs/codecavatars/sapiens/" class="publication-link">
<i class="fas fa-globe"></i>Meta
</a>
<a href="https://rawalkhirodkar.github.io/sapiens" class="publication-link">
<i class="fas fa-chart-bar"></i>Results
</a>
</div>
<div class="publication-links">
<a href="https://huggingface.co/spaces/facebook/sapiens_pose" class="publication-link">
<i class="fas fa-user"></i>Demo-Pose
</a>
<a href="https://huggingface.co/spaces/facebook/sapiens_seg" class="publication-link">
<i class="fas fa-puzzle-piece"></i>Demo-Seg
</a>
<a href="https://huggingface.co/spaces/facebook/sapiens_depth" class="publication-link">
<i class="fas fa-cube"></i>Demo-Depth
</a>
<a href="https://huggingface.co/spaces/facebook/sapiens_normal" class="publication-link">
<i class="fas fa-vector-square"></i>Demo-Normal
</a>
</div>
</div>
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def process_image(image, depth_model_name, seg_model_name):
result, npy_path = self.image_processor.process_image(image, depth_model_name, seg_model_name)
return result, npy_path
with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
gr.HTML(header_html)
with gr.Row(elem_classes="content-container"):
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
with gr.Row(elem_classes="control-panel"):
depth_model_name = gr.Dropdown(
label="Depth Model Size",
choices=list(Config.CHECKPOINTS.keys()),
value="1b",
)
seg_model_name = gr.Dropdown(
label="Background Removal Model",
choices=list(Config.SEG_CHECKPOINTS.keys()),
value="fg-bg-1b (recommended)",
)
example_model = gr.Examples(
inputs=input_image,
examples_per_page=14,
examples=[
os.path.join(Config.ASSETS_DIR, "images", img)
for img in os.listdir(os.path.join(Config.ASSETS_DIR, "images"))
],
)
with gr.Column():
result_image = gr.Image(label="Depth Estimation Result", type="pil", elem_classes="image-preview")
npy_output = gr.File(label="Output (.npy). Note: Background depth is NaN.")
run_button = gr.Button("Run", elem_classes="gr-button")
run_button.click(
fn=process_image,
inputs=[input_image, depth_model_name, seg_model_name],
outputs=[result_image, npy_output],
)
return demo
def main():
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(share=False)
if __name__ == "__main__":
main() |