Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,145 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
import logging
import os.path as osp
import pickle
from collections import deque
from math import inf
from pathlib import Path
from typing import Callable, Dict, List, Optional, Sequence, Union
from mmengine.dist import is_main_process, master_only
from mmengine.fileio import FileClient, get_file_backend
from mmengine.logging import print_log
from mmengine.registry import HOOKS
from mmengine.utils import is_list_of, is_seq_of
from .hook import Hook
DATA_BATCH = Optional[Union[dict, tuple, list]]
@HOOKS.register_module()
class CheckpointHook(Hook):
"""Save checkpoints periodically.
Args:
interval (int): The saving period. If ``by_epoch=True``, interval
indicates epochs, otherwise it indicates iterations.
Defaults to -1, which means "never".
by_epoch (bool): Saving checkpoints by epoch or by iteration.
Defaults to True.
save_optimizer (bool): Whether to save optimizer state_dict in the
checkpoint. It is usually used for resuming experiments.
Defaults to True.
save_param_scheduler (bool): Whether to save param_scheduler state_dict
in the checkpoint. It is usually used for resuming experiments.
Defaults to True.
out_dir (str, Path, Optional): The root directory to save checkpoints.
If not specified, ``runner.work_dir`` will be used by default. If
specified, the ``out_dir`` will be the concatenation of ``out_dir``
and the last level directory of ``runner.work_dir``. For example,
if the input ``our_dir`` is ``./tmp`` and ``runner.work_dir`` is
``./work_dir/cur_exp``, then the ckpt will be saved in
``./tmp/cur_exp``. Defaults to None.
max_keep_ckpts (int): The maximum checkpoints to keep.
In some cases we want only the latest few checkpoints and would
like to delete old ones to save the disk space.
Defaults to -1, which means unlimited.
save_last (bool): Whether to force the last checkpoint to be
saved regardless of interval. Defaults to True.
save_best (str, List[str], optional): If a metric is specified, it
would measure the best checkpoint during evaluation. If a list of
metrics is passed, it would measure a group of best checkpoints
corresponding to the passed metrics. The information about best
checkpoint(s) would be saved in ``runner.message_hub`` to keep
best score value and best checkpoint path, which will be also
loaded when resuming checkpoint. Options are the evaluation metrics
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
detection and instance segmentation. ``AR@100`` for proposal
recall. If ``save_best`` is ``auto``, the first key of the returned
``OrderedDict`` result will be used. Defaults to None.
rule (str, List[str], optional): Comparison rule for best score. If
set to None, it will infer a reasonable rule. Keys such as 'acc',
'top' .etc will be inferred by 'greater' rule. Keys contain 'loss'
will be inferred by 'less' rule. If ``save_best`` is a list of
metrics and ``rule`` is a str, all metrics in ``save_best`` will
share the comparison rule. If ``save_best`` and ``rule`` are both
lists, their length must be the same, and metrics in ``save_best``
will use the corresponding comparison rule in ``rule``. Options
are 'greater', 'less', None and list which contains 'greater' and
'less'. Defaults to None.
greater_keys (List[str], optional): Metric keys that will be
inferred by 'greater' comparison rule. If ``None``,
_default_greater_keys will be used. Defaults to None.
less_keys (List[str], optional): Metric keys that will be
inferred by 'less' comparison rule. If ``None``, _default_less_keys
will be used. Defaults to None.
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmengine.fileio.FileClient` for details.
Defaults to None. It will be deprecated in future. Please use
``backend_args`` instead.
filename_tmpl (str, optional): String template to indicate checkpoint
name. If specified, must contain one and only one "{}", which will
be replaced with ``epoch + 1`` if ``by_epoch=True`` else
``iteration + 1``.
Defaults to None, which means "epoch_{}.pth" or "iter_{}.pth"
accordingly.
backend_args (dict, optional): Arguments to instantiate the
prefix of uri corresponding backend. Defaults to None.
`New in version 0.2.0.`
published_keys (str, List[str], optional): If ``save_last`` is ``True``
or ``save_best`` is not ``None``, it will automatically
publish model with keys in the list after training.
Defaults to None.
`New in version 0.7.1.`
save_begin (int): Control the epoch number or iteration number
at which checkpoint saving begins. Defaults to 0, which means
saving at the beginning.
`New in version 0.8.3.`
Examples:
>>> # Save best based on single metric
>>> CheckpointHook(interval=2, by_epoch=True, save_best='acc',
>>> rule='less')
>>> # Save best based on multi metrics with the same comparison rule
>>> CheckpointHook(interval=2, by_epoch=True,
>>> save_best=['acc', 'mIoU'], rule='greater')
>>> # Save best based on multi metrics with different comparison rule
>>> CheckpointHook(interval=2, by_epoch=True,
>>> save_best=['FID', 'IS'], rule=['less', 'greater'])
>>> # Save best based on single metric and publish model after training
>>> CheckpointHook(interval=2, by_epoch=True, save_best='acc',
>>> rule='less', published_keys=['meta', 'state_dict'])
"""
out_dir: str
priority = 'VERY_LOW'
# logic to save best checkpoints
# Since the key for determining greater or less is related to the
# downstream tasks, downstream repositories may need to overwrite
# the following inner variables accordingly.
rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y}
init_value_map = {'greater': -inf, 'less': inf}
_default_greater_keys = [
'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU',
'mAcc', 'aAcc'
]
_default_less_keys = ['loss']
def __init__(self,
interval: int = -1,
by_epoch: bool = True,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
out_dir: Optional[Union[str, Path]] = None,
max_keep_ckpts: int = -1,
save_last: bool = True,
save_best: Union[str, List[str], None] = None,
rule: Union[str, List[str], None] = None,
greater_keys: Optional[Sequence[str]] = None,
less_keys: Optional[Sequence[str]] = None,
file_client_args: Optional[dict] = None,
filename_tmpl: Optional[str] = None,
backend_args: Optional[dict] = None,
published_keys: Union[str, List[str], None] = None,
save_begin: int = 0,
**kwargs) -> None:
self.interval = interval
self.by_epoch = by_epoch
self.save_optimizer = save_optimizer
self.save_param_scheduler = save_param_scheduler
self.out_dir = out_dir # type: ignore
self.max_keep_ckpts = max_keep_ckpts
self.save_last = save_last
self.args = kwargs
if file_client_args is not None:
print_log(
'"file_client_args" will be deprecated in future. '
'Please use "backend_args" instead',
logger='current',
level=logging.WARNING)
if backend_args is not None:
raise ValueError(
'"file_client_args" and "backend_args" cannot be set '
'at the same time.')
self.file_client_args = file_client_args
self.backend_args = backend_args
if filename_tmpl is None:
if self.by_epoch:
self.filename_tmpl = 'epoch_{}.pth'
else:
self.filename_tmpl = 'iter_{}.pth'
else:
self.filename_tmpl = filename_tmpl
# save best logic
assert (isinstance(save_best, str) or is_list_of(save_best, str)
or (save_best is None)), (
'"save_best" should be a str or list of str or None, '
f'but got {type(save_best)}')
if isinstance(save_best, list):
if 'auto' in save_best:
assert len(save_best) == 1, (
'Only support one "auto" in "save_best" list.')
assert len(save_best) == len(
set(save_best)), ('Find duplicate element in "save_best".')
else:
# convert str to list[str]
if save_best is not None:
save_best = [save_best] # type: ignore # noqa: F401
self.save_best = save_best
# rule logic
assert (isinstance(rule, str) or is_list_of(rule, str)
or (rule is None)), (
'"rule" should be a str or list of str or None, '
f'but got {type(rule)}')
if isinstance(rule, list):
# check the length of rule list
assert len(rule) in [
1,
len(self.save_best) # type: ignore
], ('Number of "rule" must be 1 or the same as number of '
f'"save_best", but got {len(rule)}.')
else:
# convert str/None to list
rule = [rule] # type: ignore # noqa: F401
if greater_keys is None:
self.greater_keys = self._default_greater_keys
else:
if not isinstance(greater_keys, (list, tuple)):
greater_keys = (greater_keys, ) # type: ignore
assert is_seq_of(greater_keys, str)
self.greater_keys = greater_keys # type: ignore
if less_keys is None:
self.less_keys = self._default_less_keys
else:
if not isinstance(less_keys, (list, tuple)):
less_keys = (less_keys, ) # type: ignore
assert is_seq_of(less_keys, str)
self.less_keys = less_keys # type: ignore
if self.save_best is not None:
self.is_better_than: Dict[str, Callable] = dict()
self._init_rule(rule, self.save_best)
if len(self.key_indicators) == 1:
self.best_ckpt_path: Optional[str] = None
else:
self.best_ckpt_path_dict: Dict = dict()
# published keys
if not (isinstance(published_keys, str)
or is_seq_of(published_keys, str) or published_keys is None):
raise TypeError(
'"published_keys" should be a str or a sequence of str or '
f'None, but got {type(published_keys)}')
if isinstance(published_keys, str):
published_keys = [published_keys]
elif isinstance(published_keys, (list, tuple)):
assert len(published_keys) == len(set(published_keys)), (
'Find duplicate elements in "published_keys".')
self.published_keys = published_keys
self.last_ckpt = None
if save_begin < 0:
raise ValueError(
'save_begin should not be less than 0, but got {save_begin}')
self.save_begin = save_begin
def before_train(self, runner) -> None:
"""Finish all operations, related to checkpoint.
This function will get the appropriate file client, and the directory
to save these checkpoints of the model.
Args:
runner (Runner): The runner of the training process.
"""
if self.out_dir is None:
self.out_dir = runner.work_dir
# If self.file_client_args is None, self.file_client will not
# used in CheckpointHook. To avoid breaking backward compatibility,
# it will not be removed util the release of MMEngine1.0
self.file_client = FileClient.infer_client(self.file_client_args,
self.out_dir)
if self.file_client_args is None:
self.file_backend = get_file_backend(
self.out_dir, backend_args=self.backend_args)
else:
self.file_backend = self.file_client
# if `self.out_dir` is not equal to `runner.work_dir`, it means that
# `self.out_dir` is set so the final `self.out_dir` is the
# concatenation of `self.out_dir` and the last level directory of
# `runner.work_dir`
if self.out_dir != runner.work_dir:
basename = osp.basename(runner.work_dir.rstrip(osp.sep))
self.out_dir = self.file_backend.join_path(
self.out_dir, basename) # type: ignore # noqa: E501
runner.logger.info(f'Checkpoints will be saved to {self.out_dir}.')
if self.save_best is not None:
if len(self.key_indicators) == 1:
if 'best_ckpt' not in runner.message_hub.runtime_info:
self.best_ckpt_path = None
else:
self.best_ckpt_path = runner.message_hub.get_info(
'best_ckpt')
else:
for key_indicator in self.key_indicators:
best_ckpt_name = f'best_ckpt_{key_indicator}'
if best_ckpt_name not in runner.message_hub.runtime_info:
self.best_ckpt_path_dict[key_indicator] = None
else:
self.best_ckpt_path_dict[
key_indicator] = runner.message_hub.get_info(
best_ckpt_name)
if self.max_keep_ckpts > 0:
keep_ckpt_ids = []
if 'keep_ckpt_ids' in runner.message_hub.runtime_info:
keep_ckpt_ids = runner.message_hub.get_info('keep_ckpt_ids')
while len(keep_ckpt_ids) > self.max_keep_ckpts:
step = keep_ckpt_ids.pop(0)
if is_main_process():
path = self.file_backend.join_path(
self.out_dir, self.filename_tmpl.format(step))
if self.file_backend.isfile(path):
self.file_backend.remove(path)
elif self.file_backend.isdir(path):
# checkpoints saved by deepspeed are directories
self.file_backend.rmtree(path)
self.keep_ckpt_ids: deque = deque(keep_ckpt_ids,
self.max_keep_ckpts)
def after_train_epoch(self, runner) -> None:
"""Save the checkpoint and synchronize buffers after each epoch.
Args:
runner (Runner): The runner of the training process.
"""
if not self.by_epoch:
return
# save checkpoint for following cases:
# 1. every ``self.interval`` epochs which start at ``self.save_begin``
# 2. reach the last epoch of training
if self.every_n_epochs(runner, self.interval, self.save_begin) or (
self.save_last and self.is_last_train_epoch(runner)):
runner.logger.info(
f'Saving checkpoint at {runner.epoch + 1} epochs')
self._save_checkpoint(runner)
def after_val_epoch(self, runner, metrics):
"""Save the checkpoint and synchronize buffers after each evaluation
epoch.
Args:
runner (Runner): The runner of the training process.
metrics (dict): Evaluation results of all metrics
"""
if len(metrics) == 0:
runner.logger.warning(
'Since `metrics` is an empty dict, the behavior to save '
'the best checkpoint will be skipped in this evaluation.')
return
self._save_best_checkpoint(runner, metrics)
def after_train(self, runner) -> None:
"""Publish the checkpoint after training.
Args:
runner (Runner): The runner of the training process.
"""
if self.published_keys is None:
return
if self.save_last and self.last_ckpt is not None:
self._publish_model(runner, self.last_ckpt)
if getattr(self, 'best_ckpt_path', None) is not None:
self._publish_model(runner, str(self.best_ckpt_path))
if getattr(self, 'best_ckpt_path_dict', None) is not None:
for best_ckpt in self.best_ckpt_path_dict.values():
self._publish_model(runner, best_ckpt)
@master_only
def _publish_model(self, runner, ckpt_path: str) -> None:
"""Remove unnecessary keys from ckpt_path and save the new checkpoint.
Args:
runner (Runner): The runner of the training process.
ckpt_path (str): The checkpoint path that ought to be published.
"""
from mmengine.runner import save_checkpoint
from mmengine.runner.checkpoint import _load_checkpoint
checkpoint = _load_checkpoint(ckpt_path)
assert self.published_keys is not None
removed_keys = []
for key in list(checkpoint.keys()):
if key not in self.published_keys:
removed_keys.append(key)
checkpoint.pop(key)
if removed_keys:
print_log(
f'Key {removed_keys} will be removed because they are not '
'found in published_keys. If you want to keep them, '
f'please set `{removed_keys}` in published_keys',
logger='current')
checkpoint_data = pickle.dumps(checkpoint)
sha = hashlib.sha256(checkpoint_data).hexdigest()
final_path = osp.splitext(ckpt_path)[0] + f'-{sha[:8]}.pth'
save_checkpoint(checkpoint, final_path)
print_log(
f'The checkpoint ({ckpt_path}) is published to '
f'{final_path}.',
logger='current')
def _save_checkpoint_with_step(self, runner, step, meta):
# remove other checkpoints before save checkpoint to make the
# self.keep_ckpt_ids are saved as expected
if self.max_keep_ckpts > 0:
# _save_checkpoint and _save_best_checkpoint may call this
# _save_checkpoint_with_step in one epoch
if len(self.keep_ckpt_ids) > 0 and self.keep_ckpt_ids[-1] == step:
pass
else:
if len(self.keep_ckpt_ids) == self.max_keep_ckpts:
_step = self.keep_ckpt_ids.popleft()
if is_main_process():
ckpt_path = self.file_backend.join_path(
self.out_dir, self.filename_tmpl.format(_step))
if self.file_backend.isfile(ckpt_path):
self.file_backend.remove(ckpt_path)
elif self.file_backend.isdir(ckpt_path):
# checkpoints saved by deepspeed are directories
self.file_backend.rmtree(ckpt_path)
self.keep_ckpt_ids.append(step)
runner.message_hub.update_info('keep_ckpt_ids',
list(self.keep_ckpt_ids))
ckpt_filename = self.filename_tmpl.format(step)
self.last_ckpt = self.file_backend.join_path(self.out_dir,
ckpt_filename)
runner.message_hub.update_info('last_ckpt', self.last_ckpt)
runner.save_checkpoint(
self.out_dir,
ckpt_filename,
self.file_client_args,
save_optimizer=self.save_optimizer,
save_param_scheduler=self.save_param_scheduler,
meta=meta,
by_epoch=self.by_epoch,
backend_args=self.backend_args,
**self.args)
# Model parallel-like training should involve pulling sharded states
# from all ranks, but skip the following procedure.
if not is_main_process():
return
save_file = osp.join(runner.work_dir, 'last_checkpoint')
with open(save_file, 'w') as f:
f.write(self.last_ckpt) # type: ignore
def _save_checkpoint(self, runner) -> None:
"""Save the current checkpoint and delete outdated checkpoint.
Args:
runner (Runner): The runner of the training process.
"""
if self.by_epoch:
step = runner.epoch + 1
meta = dict(epoch=step, iter=runner.iter)
else:
step = runner.iter + 1
meta = dict(epoch=runner.epoch, iter=step)
self._save_checkpoint_with_step(runner, step, meta=meta)
def _save_best_checkpoint(self, runner, metrics) -> None:
"""Save the current checkpoint and delete outdated checkpoint.
Args:
runner (Runner): The runner of the training process.
metrics (dict): Evaluation results of all metrics.
"""
if not self.save_best:
return
if self.by_epoch:
ckpt_filename = self.filename_tmpl.format(runner.epoch)
cur_type, cur_time = 'epoch', runner.epoch
else:
ckpt_filename = self.filename_tmpl.format(runner.iter)
cur_type, cur_time = 'iter', runner.iter
meta = dict(epoch=runner.epoch, iter=runner.iter)
# handle auto in self.key_indicators and self.rules before the loop
if 'auto' in self.key_indicators:
self._init_rule(self.rules, [list(metrics.keys())[0]])
best_ckpt_updated = False
# save best logic
# get score from messagehub
for key_indicator, rule in zip(self.key_indicators, self.rules):
key_score = metrics[key_indicator]
if len(self.key_indicators) == 1:
best_score_key = 'best_score'
runtime_best_ckpt_key = 'best_ckpt'
best_ckpt_path = self.best_ckpt_path
else:
best_score_key = f'best_score_{key_indicator}'
runtime_best_ckpt_key = f'best_ckpt_{key_indicator}'
best_ckpt_path = self.best_ckpt_path_dict[key_indicator]
if best_score_key not in runner.message_hub.runtime_info:
best_score = self.init_value_map[rule]
else:
best_score = runner.message_hub.get_info(best_score_key)
if key_score is None or not self.is_better_than[key_indicator](
key_score, best_score):
continue
best_ckpt_updated = True
best_score = key_score
runner.message_hub.update_info(best_score_key, best_score)
if best_ckpt_path and is_main_process():
is_removed = False
if self.file_backend.isfile(best_ckpt_path):
self.file_backend.remove(best_ckpt_path)
is_removed = True
elif self.file_backend.isdir(best_ckpt_path):
# checkpoints saved by deepspeed are directories
self.file_backend.rmtree(best_ckpt_path)
is_removed = True
if is_removed:
runner.logger.info(
f'The previous best checkpoint {best_ckpt_path} '
'is removed')
best_ckpt_name = f'best_{key_indicator}_{ckpt_filename}'
# Replace illegal characters for filename with `_`
best_ckpt_name = best_ckpt_name.replace('/', '_')
if len(self.key_indicators) == 1:
self.best_ckpt_path = self.file_backend.join_path( # type: ignore # noqa: E501
self.out_dir, best_ckpt_name)
runner.message_hub.update_info(runtime_best_ckpt_key,
self.best_ckpt_path)
else:
self.best_ckpt_path_dict[
key_indicator] = self.file_backend.join_path( # type: ignore # noqa: E501
self.out_dir, best_ckpt_name)
runner.message_hub.update_info(
runtime_best_ckpt_key,
self.best_ckpt_path_dict[key_indicator])
runner.save_checkpoint(
self.out_dir,
filename=best_ckpt_name,
file_client_args=self.file_client_args,
save_optimizer=False,
save_param_scheduler=False,
meta=meta,
by_epoch=False,
backend_args=self.backend_args)
runner.logger.info(
f'The best checkpoint with {best_score:0.4f} {key_indicator} '
f'at {cur_time} {cur_type} is saved to {best_ckpt_name}.')
# save checkpoint again to update the best_score and best_ckpt stored
# in message_hub because the checkpoint saved in `after_train_epoch`
# or `after_train_iter` stage only keep the previous best checkpoint
# not the current best checkpoint which causes the current best
# checkpoint can not be removed when resuming training.
if best_ckpt_updated and self.last_ckpt is not None:
self._save_checkpoint_with_step(runner, cur_time, meta)
def _init_rule(self, rules, key_indicators) -> None:
"""Initialize rule, key_indicator, comparison_func, and best score. If
key_indicator is a list of string and rule is a string, all metric in
the key_indicator will share the same rule.
Here is the rule to determine which rule is used for key indicator when
the rule is not specific (note that the key indicator matching is case-
insensitive):
1. If the key indicator is in ``self.greater_keys``, the rule
will be specified as 'greater'.
2. Or if the key indicator is in ``self.less_keys``, the rule
will be specified as 'less'.
3. Or if any one item in ``self.greater_keys`` is a substring of
key_indicator, the rule will be specified as 'greater'.
4. Or if any one item in ``self.less_keys`` is a substring of
key_indicator, the rule will be specified as 'less'.
Args:
rule (List[Optional[str]]): Comparison rule for best score.
key_indicator (List[str]): Key indicator to determine
the comparison rule.
"""
if len(rules) == 1:
rules = rules * len(key_indicators)
self.rules = []
for rule, key_indicator in zip(rules, key_indicators):
if rule not in self.rule_map and rule is not None:
raise KeyError('rule must be greater, less or None, '
f'but got {rule}.')
if rule is None and key_indicator != 'auto':
# `_lc` here means we use the lower case of keys for
# case-insensitive matching
key_indicator_lc = key_indicator.lower()
greater_keys = {key.lower() for key in self.greater_keys}
less_keys = {key.lower() for key in self.less_keys}
if key_indicator_lc in greater_keys:
rule = 'greater'
elif key_indicator_lc in less_keys:
rule = 'less'
elif any(key in key_indicator_lc for key in greater_keys):
rule = 'greater'
elif any(key in key_indicator_lc for key in less_keys):
rule = 'less'
else:
raise ValueError('Cannot infer the rule for key '
f'{key_indicator}, thus a specific rule '
'must be specified.')
if rule is not None:
self.is_better_than[key_indicator] = self.rule_map[rule]
self.rules.append(rule)
self.key_indicators = key_indicators
def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs=Optional[dict]) -> None:
"""Save the checkpoint and synchronize buffers after each iteration.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
outputs (dict, optional): Outputs from model.
"""
if self.by_epoch:
return
# save checkpoint for following cases:
# 1. every ``self.interval`` iterations
# which start at ``self.save_begin``
# 2. reach the last iteration of training
if self.every_n_train_iters(runner, self.interval,
self.save_begin) or \
(self.save_last and
self.is_last_train_iter(runner)):
runner.logger.info(
f'Saving checkpoint at {runner.iter + 1} iterations')
self._save_checkpoint(runner)
|