File size: 17,186 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Dict, Optional, Sequence, Union

from mmengine import is_method_overridden

DATA_BATCH = Optional[Union[dict, tuple, list]]


class Hook:
    """Base hook class.

    All hooks should inherit from this class.
    """

    priority = 'NORMAL'
    stages = ('before_run', 'after_load_checkpoint', 'before_train',
              'before_train_epoch', 'before_train_iter', 'after_train_iter',
              'after_train_epoch', 'before_val', 'before_val_epoch',
              'before_val_iter', 'after_val_iter', 'after_val_epoch',
              'after_val', 'before_save_checkpoint', 'after_train',
              'before_test', 'before_test_epoch', 'before_test_iter',
              'after_test_iter', 'after_test_epoch', 'after_test', 'after_run')

    def before_run(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before the training validation or testing process.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
        """

    def after_run(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before the training validation or testing process.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
        """

    def before_train(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before train.

        Args:
            runner (Runner): The runner of the training process.
        """

    def after_train(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations after train.

        Args:
            runner (Runner): The runner of the training process.
        """

    def before_val(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before validation.

        Args:
            runner (Runner): The runner of the validation process.
        """

    def after_val(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations after validation.

        Args:
            runner (Runner): The runner of the validation process.
        """

    def before_test(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before testing.

        Args:
            runner (Runner): The runner of the testing process.
        """

    def after_test(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations after testing.

        Args:
            runner (Runner): The runner of the testing process.
        """

    def before_save_checkpoint(self, runner, checkpoint: dict) -> None:
        """All subclasses should override this method, if they need any
        operations before saving the checkpoint.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            checkpoint (dict): Model's checkpoint.
        """

    def after_load_checkpoint(self, runner, checkpoint: dict) -> None:
        """All subclasses should override this method, if they need any
        operations after loading the checkpoint.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            checkpoint (dict): Model's checkpoint.
        """

    def before_train_epoch(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before each training epoch.

        Args:
            runner (Runner): The runner of the training process.
        """
        self._before_epoch(runner, mode='train')

    def before_val_epoch(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before each validation epoch.

        Args:
            runner (Runner): The runner of the validation process.
        """
        self._before_epoch(runner, mode='val')

    def before_test_epoch(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations before each test epoch.

        Args:
            runner (Runner): The runner of the testing process.
        """
        self._before_epoch(runner, mode='test')

    def after_train_epoch(self, runner) -> None:
        """All subclasses should override this method, if they need any
        operations after each training epoch.

        Args:
            runner (Runner): The runner of the training process.
        """
        self._after_epoch(runner, mode='train')

    def after_val_epoch(self,
                        runner,
                        metrics: Optional[Dict[str, float]] = None) -> None:
        """All subclasses should override this method, if they need any
        operations after each validation epoch.

        Args:
            runner (Runner): The runner of the validation process.
            metrics (Dict[str, float], optional): Evaluation results of all
                metrics on validation dataset. The keys are the names of the
                metrics, and the values are corresponding results.
        """
        self._after_epoch(runner, mode='val')

    def after_test_epoch(self,
                         runner,
                         metrics: Optional[Dict[str, float]] = None) -> None:
        """All subclasses should override this method, if they need any
        operations after each test epoch.

        Args:
            runner (Runner): The runner of the testing process.
            metrics (Dict[str, float], optional): Evaluation results of all
                metrics on test dataset. The keys are the names of the
                metrics, and the values are corresponding results.
        """
        self._after_epoch(runner, mode='test')

    def before_train_iter(self,
                          runner,
                          batch_idx: int,
                          data_batch: DATA_BATCH = None) -> None:
        """All subclasses should override this method, if they need any
        operations before each training iteration.

        Args:
            runner (Runner): The runner of the training process.
            batch_idx (int): The index of the current batch in the train loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
        """
        self._before_iter(
            runner, batch_idx=batch_idx, data_batch=data_batch, mode='train')

    def before_val_iter(self,
                        runner,
                        batch_idx: int,
                        data_batch: DATA_BATCH = None) -> None:
        """All subclasses should override this method, if they need any
        operations before each validation iteration.

        Args:
            runner (Runner): The runner of the validation process.
            batch_idx (int): The index of the current batch in the val loop.
            data_batch (dict, optional): Data from dataloader.
                Defaults to None.
        """
        self._before_iter(
            runner, batch_idx=batch_idx, data_batch=data_batch, mode='val')

    def before_test_iter(self,
                         runner,
                         batch_idx: int,
                         data_batch: DATA_BATCH = None) -> None:
        """All subclasses should override this method, if they need any
        operations before each test iteration.

        Args:
            runner (Runner): The runner of the testing process.
            batch_idx (int): The index of the current batch in the test loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
                Defaults to None.
        """
        self._before_iter(
            runner, batch_idx=batch_idx, data_batch=data_batch, mode='test')

    def after_train_iter(self,
                         runner,
                         batch_idx: int,
                         data_batch: DATA_BATCH = None,
                         outputs: Optional[dict] = None) -> None:
        """All subclasses should override this method, if they need any
        operations after each training iteration.

        Args:
            runner (Runner): The runner of the training process.
            batch_idx (int): The index of the current batch in the train loop.
            data_batch (dict tuple or list, optional): Data from dataloader.
            outputs (dict, optional): Outputs from model.
        """
        self._after_iter(
            runner,
            batch_idx=batch_idx,
            data_batch=data_batch,
            outputs=outputs,
            mode='train')

    def after_val_iter(self,
                       runner,
                       batch_idx: int,
                       data_batch: DATA_BATCH = None,
                       outputs: Optional[Sequence] = None) -> None:
        """All subclasses should override this method, if they need any
        operations after each validation iteration.

        Args:
            runner (Runner): The runner of the validation process.
            batch_idx (int): The index of the current batch in the val loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
            outputs (Sequence, optional): Outputs from model.
        """
        self._after_iter(
            runner,
            batch_idx=batch_idx,
            data_batch=data_batch,
            outputs=outputs,
            mode='val')

    def after_test_iter(self,
                        runner,
                        batch_idx: int,
                        data_batch: DATA_BATCH = None,
                        outputs: Optional[Sequence] = None) -> None:
        """All subclasses should override this method, if they need any
        operations after each test iteration.

        Args:
            runner (Runner): The runner of the training  process.
            batch_idx (int): The index of the current batch in the test loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
            outputs (Sequence, optional): Outputs from model.
        """
        self._after_iter(
            runner,
            batch_idx=batch_idx,
            data_batch=data_batch,
            outputs=outputs,
            mode='test')

    def _before_epoch(self, runner, mode: str = 'train') -> None:
        """All subclasses should override this method, if they need any
        operations before each epoch.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            mode (str): Current mode of runner. Defaults to 'train'.
        """

    def _after_epoch(self, runner, mode: str = 'train') -> None:
        """All subclasses should override this method, if they need any
        operations after each epoch.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            mode (str): Current mode of runner. Defaults to 'train'.
        """

    def _before_iter(self,
                     runner,
                     batch_idx: int,
                     data_batch: DATA_BATCH = None,
                     mode: str = 'train') -> None:
        """All subclasses should override this method, if they need any
        operations before each iter.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            batch_idx (int): The index of the current batch in the loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
            mode (str): Current mode of runner. Defaults to 'train'.
        """

    def _after_iter(self,
                    runner,
                    batch_idx: int,
                    data_batch: DATA_BATCH = None,
                    outputs: Optional[Union[Sequence, dict]] = None,
                    mode: str = 'train') -> None:
        """All subclasses should override this method, if they need any
        operations after each epoch.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            batch_idx (int): The index of the current batch in the loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
            outputs (dict or Sequence, optional): Outputs from model.
            mode (str): Current mode of runner. Defaults to 'train'.
        """

    def every_n_epochs(self, runner, n: int, start: int = 0) -> bool:
        """Test whether current epoch can be evenly divided by n.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            n (int): Whether current epoch can be evenly divided by n.
            start (int): Starting from `start` to check the logic for
                every n epochs. Defaults to 0.

        Returns:
            bool: Whether current epoch can be evenly divided by n.
        """
        dividend = runner.epoch + 1 - start
        return dividend % n == 0 if dividend >= 0 and n > 0 else False

    def every_n_inner_iters(self, batch_idx: int, n: int) -> bool:
        """Test whether current inner iteration can be evenly divided by n.

        Args:
            batch_idx (int): Current batch index of the training, validation
                or testing loop.
            n (int): Whether current inner iteration can be evenly
                divided by n.

        Returns:
            bool: Whether current inner iteration can be evenly
            divided by n.
        """
        return (batch_idx + 1) % n == 0 if n > 0 else False

    def every_n_train_iters(self, runner, n: int, start: int = 0) -> bool:
        """Test whether current training iteration can be evenly divided by n.

        Args:
            runner (Runner): The runner of the training, validation or testing
                process.
            n (int): Whether current iteration can be evenly divided by n.
            start (int): Starting from `start` to check the logic for
                every n iterations. Defaults to 0.

        Returns:
            bool: Return True if the current iteration can be evenly divided
            by n, otherwise False.
        """
        dividend = runner.iter + 1 - start
        return dividend % n == 0 if dividend >= 0 and n > 0 else False

    def end_of_epoch(self, dataloader, batch_idx: int) -> bool:
        """Check whether the current iteration reaches the last iteration of
        the dataloader.

        Args:
            dataloader (Dataloader): The dataloader of the training,
                validation or testing process.
            batch_idx (int): The index of the current batch in the loop.
        Returns:
            bool: Whether reaches the end of current epoch or not.
        """
        return batch_idx + 1 == len(dataloader)

    def is_last_train_epoch(self, runner) -> bool:
        """Test whether current epoch is the last train epoch.

        Args:
            runner (Runner): The runner of the training process.

        Returns:
            bool: Whether reaches the end of training epoch.
        """
        return runner.epoch + 1 == runner.max_epochs

    def is_last_train_iter(self, runner) -> bool:
        """Test whether current iteration is the last train iteration.

        Args:
            runner (Runner): The runner of the training process.

        Returns:
            bool: Whether current iteration is the last train iteration.
        """
        return runner.iter + 1 == runner.max_iters

    def get_triggered_stages(self) -> list:
        """Get all triggered stages with method name of the hook.

        Returns:
            list: List of triggered stages.
        """
        trigger_stages = set()
        for stage in Hook.stages:
            if is_method_overridden(stage, Hook, self):
                trigger_stages.add(stage)

        # some methods will be triggered in multi stages
        # use this dict to map method to stages.
        method_stages_map = {
            '_before_epoch':
            ['before_train_epoch', 'before_val_epoch', 'before_test_epoch'],
            '_after_epoch':
            ['after_train_epoch', 'after_val_epoch', 'after_test_epoch'],
            '_before_iter':
            ['before_train_iter', 'before_val_iter', 'before_test_iter'],
            '_after_iter':
            ['after_train_iter', 'after_val_iter', 'after_test_iter'],
        }

        for method, map_stages in method_stages_map.items():
            if is_method_overridden(method, Hook, self):
                trigger_stages.update(map_stages)

        return list(trigger_stages)