Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,186 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Optional, Sequence, Union
from mmengine import is_method_overridden
DATA_BATCH = Optional[Union[dict, tuple, list]]
class Hook:
"""Base hook class.
All hooks should inherit from this class.
"""
priority = 'NORMAL'
stages = ('before_run', 'after_load_checkpoint', 'before_train',
'before_train_epoch', 'before_train_iter', 'after_train_iter',
'after_train_epoch', 'before_val', 'before_val_epoch',
'before_val_iter', 'after_val_iter', 'after_val_epoch',
'after_val', 'before_save_checkpoint', 'after_train',
'before_test', 'before_test_epoch', 'before_test_iter',
'after_test_iter', 'after_test_epoch', 'after_test', 'after_run')
def before_run(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before the training validation or testing process.
Args:
runner (Runner): The runner of the training, validation or testing
process.
"""
def after_run(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before the training validation or testing process.
Args:
runner (Runner): The runner of the training, validation or testing
process.
"""
def before_train(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before train.
Args:
runner (Runner): The runner of the training process.
"""
def after_train(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations after train.
Args:
runner (Runner): The runner of the training process.
"""
def before_val(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before validation.
Args:
runner (Runner): The runner of the validation process.
"""
def after_val(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations after validation.
Args:
runner (Runner): The runner of the validation process.
"""
def before_test(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before testing.
Args:
runner (Runner): The runner of the testing process.
"""
def after_test(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations after testing.
Args:
runner (Runner): The runner of the testing process.
"""
def before_save_checkpoint(self, runner, checkpoint: dict) -> None:
"""All subclasses should override this method, if they need any
operations before saving the checkpoint.
Args:
runner (Runner): The runner of the training, validation or testing
process.
checkpoint (dict): Model's checkpoint.
"""
def after_load_checkpoint(self, runner, checkpoint: dict) -> None:
"""All subclasses should override this method, if they need any
operations after loading the checkpoint.
Args:
runner (Runner): The runner of the training, validation or testing
process.
checkpoint (dict): Model's checkpoint.
"""
def before_train_epoch(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before each training epoch.
Args:
runner (Runner): The runner of the training process.
"""
self._before_epoch(runner, mode='train')
def before_val_epoch(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before each validation epoch.
Args:
runner (Runner): The runner of the validation process.
"""
self._before_epoch(runner, mode='val')
def before_test_epoch(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations before each test epoch.
Args:
runner (Runner): The runner of the testing process.
"""
self._before_epoch(runner, mode='test')
def after_train_epoch(self, runner) -> None:
"""All subclasses should override this method, if they need any
operations after each training epoch.
Args:
runner (Runner): The runner of the training process.
"""
self._after_epoch(runner, mode='train')
def after_val_epoch(self,
runner,
metrics: Optional[Dict[str, float]] = None) -> None:
"""All subclasses should override this method, if they need any
operations after each validation epoch.
Args:
runner (Runner): The runner of the validation process.
metrics (Dict[str, float], optional): Evaluation results of all
metrics on validation dataset. The keys are the names of the
metrics, and the values are corresponding results.
"""
self._after_epoch(runner, mode='val')
def after_test_epoch(self,
runner,
metrics: Optional[Dict[str, float]] = None) -> None:
"""All subclasses should override this method, if they need any
operations after each test epoch.
Args:
runner (Runner): The runner of the testing process.
metrics (Dict[str, float], optional): Evaluation results of all
metrics on test dataset. The keys are the names of the
metrics, and the values are corresponding results.
"""
self._after_epoch(runner, mode='test')
def before_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None) -> None:
"""All subclasses should override this method, if they need any
operations before each training iteration.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
"""
self._before_iter(
runner, batch_idx=batch_idx, data_batch=data_batch, mode='train')
def before_val_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None) -> None:
"""All subclasses should override this method, if they need any
operations before each validation iteration.
Args:
runner (Runner): The runner of the validation process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict, optional): Data from dataloader.
Defaults to None.
"""
self._before_iter(
runner, batch_idx=batch_idx, data_batch=data_batch, mode='val')
def before_test_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None) -> None:
"""All subclasses should override this method, if they need any
operations before each test iteration.
Args:
runner (Runner): The runner of the testing process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
Defaults to None.
"""
self._before_iter(
runner, batch_idx=batch_idx, data_batch=data_batch, mode='test')
def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[dict] = None) -> None:
"""All subclasses should override this method, if they need any
operations after each training iteration.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (dict tuple or list, optional): Data from dataloader.
outputs (dict, optional): Outputs from model.
"""
self._after_iter(
runner,
batch_idx=batch_idx,
data_batch=data_batch,
outputs=outputs,
mode='train')
def after_val_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[Sequence] = None) -> None:
"""All subclasses should override this method, if they need any
operations after each validation iteration.
Args:
runner (Runner): The runner of the validation process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
outputs (Sequence, optional): Outputs from model.
"""
self._after_iter(
runner,
batch_idx=batch_idx,
data_batch=data_batch,
outputs=outputs,
mode='val')
def after_test_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[Sequence] = None) -> None:
"""All subclasses should override this method, if they need any
operations after each test iteration.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
outputs (Sequence, optional): Outputs from model.
"""
self._after_iter(
runner,
batch_idx=batch_idx,
data_batch=data_batch,
outputs=outputs,
mode='test')
def _before_epoch(self, runner, mode: str = 'train') -> None:
"""All subclasses should override this method, if they need any
operations before each epoch.
Args:
runner (Runner): The runner of the training, validation or testing
process.
mode (str): Current mode of runner. Defaults to 'train'.
"""
def _after_epoch(self, runner, mode: str = 'train') -> None:
"""All subclasses should override this method, if they need any
operations after each epoch.
Args:
runner (Runner): The runner of the training, validation or testing
process.
mode (str): Current mode of runner. Defaults to 'train'.
"""
def _before_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
mode: str = 'train') -> None:
"""All subclasses should override this method, if they need any
operations before each iter.
Args:
runner (Runner): The runner of the training, validation or testing
process.
batch_idx (int): The index of the current batch in the loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
mode (str): Current mode of runner. Defaults to 'train'.
"""
def _after_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[Union[Sequence, dict]] = None,
mode: str = 'train') -> None:
"""All subclasses should override this method, if they need any
operations after each epoch.
Args:
runner (Runner): The runner of the training, validation or testing
process.
batch_idx (int): The index of the current batch in the loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
outputs (dict or Sequence, optional): Outputs from model.
mode (str): Current mode of runner. Defaults to 'train'.
"""
def every_n_epochs(self, runner, n: int, start: int = 0) -> bool:
"""Test whether current epoch can be evenly divided by n.
Args:
runner (Runner): The runner of the training, validation or testing
process.
n (int): Whether current epoch can be evenly divided by n.
start (int): Starting from `start` to check the logic for
every n epochs. Defaults to 0.
Returns:
bool: Whether current epoch can be evenly divided by n.
"""
dividend = runner.epoch + 1 - start
return dividend % n == 0 if dividend >= 0 and n > 0 else False
def every_n_inner_iters(self, batch_idx: int, n: int) -> bool:
"""Test whether current inner iteration can be evenly divided by n.
Args:
batch_idx (int): Current batch index of the training, validation
or testing loop.
n (int): Whether current inner iteration can be evenly
divided by n.
Returns:
bool: Whether current inner iteration can be evenly
divided by n.
"""
return (batch_idx + 1) % n == 0 if n > 0 else False
def every_n_train_iters(self, runner, n: int, start: int = 0) -> bool:
"""Test whether current training iteration can be evenly divided by n.
Args:
runner (Runner): The runner of the training, validation or testing
process.
n (int): Whether current iteration can be evenly divided by n.
start (int): Starting from `start` to check the logic for
every n iterations. Defaults to 0.
Returns:
bool: Return True if the current iteration can be evenly divided
by n, otherwise False.
"""
dividend = runner.iter + 1 - start
return dividend % n == 0 if dividend >= 0 and n > 0 else False
def end_of_epoch(self, dataloader, batch_idx: int) -> bool:
"""Check whether the current iteration reaches the last iteration of
the dataloader.
Args:
dataloader (Dataloader): The dataloader of the training,
validation or testing process.
batch_idx (int): The index of the current batch in the loop.
Returns:
bool: Whether reaches the end of current epoch or not.
"""
return batch_idx + 1 == len(dataloader)
def is_last_train_epoch(self, runner) -> bool:
"""Test whether current epoch is the last train epoch.
Args:
runner (Runner): The runner of the training process.
Returns:
bool: Whether reaches the end of training epoch.
"""
return runner.epoch + 1 == runner.max_epochs
def is_last_train_iter(self, runner) -> bool:
"""Test whether current iteration is the last train iteration.
Args:
runner (Runner): The runner of the training process.
Returns:
bool: Whether current iteration is the last train iteration.
"""
return runner.iter + 1 == runner.max_iters
def get_triggered_stages(self) -> list:
"""Get all triggered stages with method name of the hook.
Returns:
list: List of triggered stages.
"""
trigger_stages = set()
for stage in Hook.stages:
if is_method_overridden(stage, Hook, self):
trigger_stages.add(stage)
# some methods will be triggered in multi stages
# use this dict to map method to stages.
method_stages_map = {
'_before_epoch':
['before_train_epoch', 'before_val_epoch', 'before_test_epoch'],
'_after_epoch':
['after_train_epoch', 'after_val_epoch', 'after_test_epoch'],
'_before_iter':
['before_train_iter', 'before_val_iter', 'before_test_iter'],
'_after_iter':
['after_train_iter', 'after_val_iter', 'after_test_iter'],
}
for method, map_stages in method_stages_map.items():
if is_method_overridden(method, Hook, self):
trigger_stages.update(map_stages)
return list(trigger_stages)
|