File size: 103,547 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import logging
import os
import socket
import os.path as osp
import pickle
import platform
import time
import warnings
from collections import OrderedDict
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Union

import torch
import torch.nn as nn
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader

import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.dataset import worker_init_fn as default_worker_init_fn
from mmengine.device import get_device
from mmengine.dist import (broadcast, get_dist_info, get_rank, init_dist,
                           is_distributed, master_only)
from mmengine.evaluator import Evaluator
from mmengine.fileio import FileClient, join_path
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger, print_log
from mmengine.model import (MMDistributedDataParallel, convert_sync_batchnorm,
                            is_model_wrapper, revert_sync_batchnorm)
from mmengine.model.efficient_conv_bn_eval import \
    turn_on_efficient_conv_bn_eval
from mmengine.optim import (OptimWrapper, OptimWrapperDict, _ParamScheduler,
                            build_optim_wrapper)
from mmengine.registry import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS,
                               HOOKS, LOG_PROCESSORS, LOOPS, MODEL_WRAPPERS,
                               MODELS, OPTIM_WRAPPERS, PARAM_SCHEDULERS,
                               RUNNERS, VISUALIZERS, DefaultScope)
from mmengine.utils import apply_to, digit_version, get_git_hash, is_seq_of
from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env,
                                     set_multi_processing)
from mmengine.visualization import Visualizer
from .activation_checkpointing import turn_on_activation_checkpointing
from .base_loop import BaseLoop
from .checkpoint import (_load_checkpoint, _load_checkpoint_to_model,
                         find_latest_checkpoint, save_checkpoint,
                         weights_to_cpu)
from .log_processor import LogProcessor
from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop
from .priority import Priority, get_priority
from .utils import set_random_seed

ConfigType = Union[Dict, Config, ConfigDict]
ParamSchedulerType = Union[List[_ParamScheduler], Dict[str,
                                                       List[_ParamScheduler]]]
OptimWrapperType = Union[OptimWrapper, OptimWrapperDict]


@RUNNERS.register_module()
class Runner:
    """A training helper for PyTorch.

    Runner object can be built from config by ``runner = Runner.from_cfg(cfg)``
    where the ``cfg`` usually contains training, validation, and test-related
    configurations to build corresponding components. We usually use the
    same config to launch training, testing, and validation tasks. However,
    only some of these components are necessary at the same time, e.g.,
    testing a model does not need training or validation-related components.

    To avoid repeatedly modifying config, the construction of ``Runner`` adopts
    lazy initialization to only initialize components when they are going to be
    used. Therefore, the model is always initialized at the beginning, and
    training, validation, and, testing related components are only initialized
    when calling ``runner.train()``, ``runner.val()``, and ``runner.test()``,
    respectively.

    Args:
        model (:obj:`torch.nn.Module` or dict): The model to be run. It can be
            a dict used for build a model.
        work_dir (str): The working directory to save checkpoints. The logs
            will be saved in the subdirectory of `work_dir` named
            :attr:`timestamp`.
        train_dataloader (Dataloader or dict, optional): A dataloader object or
            a dict to build a dataloader. If ``None`` is given, it means
            skipping training steps. Defaults to None.
            See :meth:`build_dataloader` for more details.
        val_dataloader (Dataloader or dict, optional): A dataloader object or
            a dict to build a dataloader. If ``None`` is given, it means
            skipping validation steps. Defaults to None.
            See :meth:`build_dataloader` for more details.
        test_dataloader (Dataloader or dict, optional): A dataloader object or
            a dict to build a dataloader. If ``None`` is given, it means
            skipping test steps. Defaults to None.
            See :meth:`build_dataloader` for more details.
        train_cfg (dict, optional): A dict to build a training loop. If it does
            not provide "type" key, it should contain "by_epoch" to decide
            which type of training loop :class:`EpochBasedTrainLoop` or
            :class:`IterBasedTrainLoop` should be used. If ``train_cfg``
            specified, :attr:`train_dataloader` should also be specified.
            Defaults to None. See :meth:`build_train_loop` for more details.
        val_cfg (dict, optional): A dict to build a validation loop. If it does
            not provide "type" key, :class:`ValLoop` will be used by default.
            If ``val_cfg`` specified, :attr:`val_dataloader` should also be
            specified. If ``ValLoop`` is built with `fp16=True``,
            ``runner.val()`` will be performed under fp16 precision.
            Defaults to None. See :meth:`build_val_loop` for more details.
        test_cfg (dict, optional): A dict to build a test loop. If it does
            not provide "type" key, :class:`TestLoop` will be used by default.
            If ``test_cfg`` specified, :attr:`test_dataloader` should also be
            specified. If ``ValLoop`` is built with `fp16=True``,
            ``runner.val()`` will be performed under fp16 precision.
            Defaults to None. See :meth:`build_test_loop` for more details.
        auto_scale_lr (dict, Optional): Config to scale the learning rate
            automatically. It includes ``base_batch_size`` and ``enable``.
            ``base_batch_size`` is the batch size that the optimizer lr is
            based on. ``enable`` is the switch to turn on and off the feature.
        optim_wrapper (OptimWrapper or dict, optional):
            Computing gradient of model parameters. If specified,
            :attr:`train_dataloader` should also be specified. If automatic
            mixed precision or gradient accmulation
            training is required. The type of ``optim_wrapper`` should be
            AmpOptimizerWrapper. See :meth:`build_optim_wrapper` for
            examples. Defaults to None.
        param_scheduler (_ParamScheduler or dict or list, optional):
            Parameter scheduler for updating optimizer parameters. If
            specified, :attr:`optimizer` should also be specified.
            Defaults to None.
            See :meth:`build_param_scheduler` for examples.
        val_evaluator (Evaluator or dict or list, optional): A evaluator object
            used for computing metrics for validation. It can be a dict or a
            list of dict to build a evaluator. If specified,
            :attr:`val_dataloader` should also be specified. Defaults to None.
        test_evaluator (Evaluator or dict or list, optional): A evaluator
            object used for computing metrics for test steps. It can be a dict
            or a list of dict to build a evaluator. If specified,
            :attr:`test_dataloader` should also be specified. Defaults to None.
        default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks to
            execute default actions like updating model parameters and saving
            checkpoints. Default hooks are ``OptimizerHook``,
            ``IterTimerHook``, ``LoggerHook``, ``ParamSchedulerHook`` and
            ``CheckpointHook``. Defaults to None.
            See :meth:`register_default_hooks` for more details.
        custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
            custom actions like visualizing images processed by pipeline.
            Defaults to None.
        data_preprocessor (dict, optional): The pre-process config of
            :class:`BaseDataPreprocessor`. If the ``model`` argument is a dict
            and doesn't contain the key ``data_preprocessor``, set the argument
            as the ``data_preprocessor`` of the ``model`` dict.
            Defaults to None.
        load_from (str, optional): The checkpoint file to load from.
            Defaults to None.
        resume (bool): Whether to resume training. Defaults to False. If
            ``resume`` is True and ``load_from`` is None, automatically to
            find latest checkpoint from ``work_dir``. If not found, resuming
            does nothing.
        launcher (str): Way to launcher multi-process. Supported launchers
            are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' is provided,
            non-distributed environment will be launched.
        env_cfg (dict): A dict used for setting environment. Defaults to
            dict(dist_cfg=dict(backend='nccl')).
        log_processor (dict, optional): A processor to format logs. Defaults to
            None.
        log_level (int or str): The log level of MMLogger handlers.
            Defaults to 'INFO'.
        visualizer (Visualizer or dict, optional): A Visualizer object or a
            dict build Visualizer object. Defaults to None. If not
            specified, default config will be used.
        default_scope (str): Used to reset registries location.
            Defaults to "mmengine".
        randomness (dict): Some settings to make the experiment as reproducible
            as possible like seed and deterministic.
            Defaults to ``dict(seed=None)``. If seed is None, a random number
            will be generated and it will be broadcasted to all other processes
            if in distributed environment. If ``cudnn_benchmark`` is
            ``True`` in ``env_cfg`` but ``deterministic`` is ``True`` in
            ``randomness``, the value of ``torch.backends.cudnn.benchmark``
            will be ``False`` finally.
        experiment_name (str, optional): Name of current experiment. If not
            specified, timestamp will be used as ``experiment_name``.
            Defaults to None.
        cfg (dict or Configdict or :obj:`Config`, optional): Full config.
            Defaults to None.

    Note:
        Since PyTorch 2.0.0, you can enable ``torch.compile`` by passing in
        `cfg.compile = True`. If you want to control compile options, you
        can pass a dict, e.g. ``cfg.compile = dict(backend='eager')``.
        Refer to `PyTorch API Documentation <https://pytorch.org/docs/
        master/generated/torch.compile.html#torch.compile>`_ for more valid
        options.

    Examples:
        >>> from mmengine.runner import Runner
        >>> cfg = dict(
        >>>     model=dict(type='ToyModel'),
        >>>     work_dir='path/of/work_dir',
        >>>     train_dataloader=dict(
        >>>     dataset=dict(type='ToyDataset'),
        >>>     sampler=dict(type='DefaultSampler', shuffle=True),
        >>>     batch_size=1,
        >>>     num_workers=0),
        >>>     val_dataloader=dict(
        >>>         dataset=dict(type='ToyDataset'),
        >>>         sampler=dict(type='DefaultSampler', shuffle=False),
        >>>        batch_size=1,
        >>>        num_workers=0),
        >>>     test_dataloader=dict(
        >>>         dataset=dict(type='ToyDataset'),
        >>>         sampler=dict(type='DefaultSampler', shuffle=False),
        >>>         batch_size=1,
        >>>         num_workers=0),
        >>>     auto_scale_lr=dict(base_batch_size=16, enable=False),
        >>>     optim_wrapper=dict(type='OptimizerWrapper', optimizer=dict(
        >>>         type='SGD', lr=0.01)),
        >>>     param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
        >>>     val_evaluator=dict(type='ToyEvaluator'),
        >>>     test_evaluator=dict(type='ToyEvaluator'),
        >>>     train_cfg=dict(by_epoch=True, max_epochs=3, val_interval=1),
        >>>     val_cfg=dict(),
        >>>     test_cfg=dict(),
        >>>     custom_hooks=[],
        >>>     default_hooks=dict(
        >>>         timer=dict(type='IterTimerHook'),
        >>>         checkpoint=dict(type='CheckpointHook', interval=1),
        >>>         logger=dict(type='LoggerHook'),
        >>>         optimizer=dict(type='OptimizerHook', grad_clip=False),
        >>>         param_scheduler=dict(type='ParamSchedulerHook')),
        >>>     launcher='none',
        >>>     env_cfg=dict(dist_cfg=dict(backend='nccl')),
        >>>     log_processor=dict(window_size=20),
        >>>     visualizer=dict(type='Visualizer',
        >>>     vis_backends=[dict(type='LocalVisBackend',
        >>>                        save_dir='temp_dir')])
        >>>    )
        >>> runner = Runner.from_cfg(cfg)
        >>> runner.train()
        >>> runner.test()
    """
    cfg: Config
    _train_loop: Optional[Union[BaseLoop, Dict]]
    _val_loop: Optional[Union[BaseLoop, Dict]]
    _test_loop: Optional[Union[BaseLoop, Dict]]

    def __init__(
        self,
        model: Union[nn.Module, Dict],
        work_dir: str,
        train_dataloader: Optional[Union[DataLoader, Dict]] = None,
        val_dataloader: Optional[Union[DataLoader, Dict]] = None,
        test_dataloader: Optional[Union[DataLoader, Dict]] = None,
        train_cfg: Optional[Dict] = None,
        val_cfg: Optional[Dict] = None,
        test_cfg: Optional[Dict] = None,
        auto_scale_lr: Optional[Dict] = None,
        optim_wrapper: Optional[Union[OptimWrapper, Dict]] = None,
        param_scheduler: Optional[Union[_ParamScheduler, Dict, List]] = None,
        val_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
        test_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
        default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
        custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
        data_preprocessor: Union[nn.Module, Dict, None] = None,
        load_from: Optional[str] = None,
        resume: bool = False,
        launcher: str = 'none',
        env_cfg: Dict = dict(dist_cfg=dict(backend='nccl')),
        log_processor: Optional[Dict] = None,
        log_level: str = 'INFO',
        visualizer: Optional[Union[Visualizer, Dict]] = None,
        default_scope: str = 'mmengine',
        randomness: Dict = dict(seed=None),
        experiment_name: Optional[str] = None,
        cfg: Optional[ConfigType] = None,
    ):
        self._work_dir = osp.abspath(work_dir)
        mmengine.mkdir_or_exist(self._work_dir)

        # recursively copy the `cfg` because `self.cfg` will be modified
        # everywhere.
        if cfg is not None:
            if isinstance(cfg, Config):
                self.cfg = copy.deepcopy(cfg)
            elif isinstance(cfg, dict):
                self.cfg = Config(cfg)
        else:
            self.cfg = Config(dict())

        # lazy initialization
        training_related = [train_dataloader, train_cfg, optim_wrapper]
        if not (all(item is None for item in training_related)
                or all(item is not None for item in training_related)):
            raise ValueError(
                'train_dataloader, train_cfg, and optim_wrapper should be '
                'either all None or not None, but got '
                f'train_dataloader={train_dataloader}, '
                f'train_cfg={train_cfg}, '
                f'optim_wrapper={optim_wrapper}.')
        self._train_dataloader = train_dataloader
        self._train_loop = train_cfg

        self.optim_wrapper: Optional[Union[OptimWrapper, dict]]
        self.optim_wrapper = optim_wrapper

        self.auto_scale_lr = auto_scale_lr

        # If there is no need to adjust learning rate, momentum or other
        # parameters of optimizer, param_scheduler can be None
        if param_scheduler is not None and self.optim_wrapper is None:
            raise ValueError(
                'param_scheduler should be None when optim_wrapper is None, '
                f'but got {param_scheduler}')

        # Parse `param_scheduler` to a list or a dict. If `optim_wrapper` is a
        # `dict` with single optimizer, parsed param_scheduler will be a
        # list of parameter schedulers. If `optim_wrapper` is
        # a `dict` with multiple optimizers, parsed `param_scheduler` will be
        # dict with multiple list of parameter schedulers.
        self._check_scheduler_cfg(param_scheduler)
        self.param_schedulers = param_scheduler

        val_related = [val_dataloader, val_cfg, val_evaluator]
        if not (all(item is None
                    for item in val_related) or all(item is not None
                                                    for item in val_related)):
            raise ValueError(
                'val_dataloader, val_cfg, and val_evaluator should be either '
                'all None or not None, but got '
                f'val_dataloader={val_dataloader}, val_cfg={val_cfg}, '
                f'val_evaluator={val_evaluator}')
        self._val_dataloader = val_dataloader
        self._val_loop = val_cfg
        self._val_evaluator = val_evaluator

        test_related = [test_dataloader, test_cfg, test_evaluator]
        if not (all(item is None for item in test_related)
                or all(item is not None for item in test_related)):
            raise ValueError(
                'test_dataloader, test_cfg, and test_evaluator should be '
                'either all None or not None, but got '
                f'test_dataloader={test_dataloader}, test_cfg={test_cfg}, '
                f'test_evaluator={test_evaluator}')
        self._test_dataloader = test_dataloader
        self._test_loop = test_cfg
        self._test_evaluator = test_evaluator

        self._launcher = launcher
        if self._launcher == 'none':
            self._distributed = False
        else:
            self._distributed = True

        # self._timestamp will be set in the `setup_env` method. Besides,
        # it also will initialize multi-process and (or) distributed
        # environment.
        self.setup_env(env_cfg)
        # self._deterministic and self._seed will be set in the
        # `set_randomness`` method
        self._randomness_cfg = randomness
        self.set_randomness(**randomness)

        if experiment_name is not None:
            self._experiment_name = f'{experiment_name}_{self._timestamp}'
        elif self.cfg.filename is not None:
            filename_no_ext = osp.splitext(osp.basename(self.cfg.filename))[0]
            self._experiment_name = f'{filename_no_ext}_{self._timestamp}'
        else:
            self._experiment_name = self.timestamp
        self._log_dir = osp.join(self.work_dir, self.timestamp)
        mmengine.mkdir_or_exist(self._log_dir)
        # Used to reset registries location. See :meth:`Registry.build` for
        # more details.
        if default_scope is not None:
            default_scope = DefaultScope.get_instance(  # type: ignore
                self._experiment_name,
                scope_name=default_scope)
        self.default_scope = default_scope

        # Build log processor to format message.
        log_processor = dict() if log_processor is None else log_processor
        self.log_processor = self.build_log_processor(log_processor)
        # Since `get_instance` could return any subclass of ManagerMixin. The
        # corresponding attribute needs a type hint.
        self.logger = self.build_logger(log_level=log_level)

        # Collect and log environment information.
        self._log_env(env_cfg)

        # Build `message_hub` for communication among components.
        # `message_hub` can store log scalars (loss, learning rate) and
        # runtime information (iter and epoch). Those components that do not
        # have access to the runner can get iteration or epoch information
        # from `message_hub`. For example, models can get the latest created
        # `message_hub` by
        # `self.message_hub=MessageHub.get_current_instance()` and then get
        # current epoch by `cur_epoch = self.message_hub.get_info('epoch')`.
        # See `MessageHub` and `ManagerMixin` for more details.
        self.message_hub = self.build_message_hub()
        # visualizer used for writing log or visualizing all kinds of data
        self.visualizer = self.build_visualizer(visualizer)
        if self.cfg:
            self.visualizer.add_config(self.cfg)

        self._load_from = load_from
        self._resume = resume
        # flag to mark whether checkpoint has been loaded or resumed
        self._has_loaded = False

        # build a model
        if isinstance(model, dict) and data_preprocessor is not None:
            # Merge the data_preprocessor to model config.
            model.setdefault('data_preprocessor', data_preprocessor)
        self.model = self.build_model(model)
        # wrap model
        self.model = self.wrap_model(
            self.cfg.get('model_wrapper_cfg'), self.model)

        # get model name from the model class
        if hasattr(self.model, 'module'):
            self._model_name = self.model.module.__class__.__name__
        else:
            self._model_name = self.model.__class__.__name__

        self._hooks: List[Hook] = []
        # register hooks to `self._hooks`
        self.register_hooks(default_hooks, custom_hooks)
        # log hooks information
        self.logger.info(f'Hooks will be executed in the following '
                         f'order:\n{self.get_hooks_info()}')

        # dump `cfg` to `work_dir`
        self.dump_config()

    @classmethod
    def from_cfg(cls, cfg: ConfigType) -> 'Runner':
        """Build a runner from config.

        Args:
            cfg (ConfigType): A config used for building runner. Keys of
                ``cfg`` can see :meth:`__init__`.

        Returns:
            Runner: A runner build from ``cfg``.
        """
        cfg = copy.deepcopy(cfg)
        runner = cls(
            model=cfg['model'],
            work_dir=cfg['work_dir'],
            train_dataloader=cfg.get('train_dataloader'),
            val_dataloader=cfg.get('val_dataloader'),
            test_dataloader=cfg.get('test_dataloader'),
            train_cfg=cfg.get('train_cfg'),
            val_cfg=cfg.get('val_cfg'),
            test_cfg=cfg.get('test_cfg'),
            auto_scale_lr=cfg.get('auto_scale_lr'),
            optim_wrapper=cfg.get('optim_wrapper'),
            param_scheduler=cfg.get('param_scheduler'),
            val_evaluator=cfg.get('val_evaluator'),
            test_evaluator=cfg.get('test_evaluator'),
            default_hooks=cfg.get('default_hooks'),
            custom_hooks=cfg.get('custom_hooks'),
            data_preprocessor=cfg.get('data_preprocessor'),
            load_from=cfg.get('load_from'),
            resume=cfg.get('resume', False),
            launcher=cfg.get('launcher', 'none'),
            env_cfg=cfg.get('env_cfg'),  # type: ignore
            log_processor=cfg.get('log_processor'),
            log_level=cfg.get('log_level', 'INFO'),
            visualizer=cfg.get('visualizer'),
            default_scope=cfg.get('default_scope', 'mmengine'),
            randomness=cfg.get('randomness', dict(seed=None)),
            experiment_name=cfg.get('experiment_name'),
            cfg=cfg,
        )

        return runner

    @property
    def experiment_name(self):
        """str: Name of experiment."""
        return self._experiment_name

    @property
    def model_name(self):
        """str: Name of the model, usually the module class name."""
        return self._model_name

    @property
    def work_dir(self):
        """str: The working directory to save checkpoints and logs."""
        return self._work_dir

    @property
    def log_dir(self):
        return self._log_dir

    @property
    def max_epochs(self):
        """int: Total epochs to train model."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.max_epochs
        else:
            return 0

    @property
    def max_iters(self):
        """int: Total iterations to train model."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.max_iters
        else:
            return 0

    @property
    def epoch(self):
        """int: Current epoch."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.epoch
        else:
            return 0

    @property
    def iter(self):
        """int: Current iteration."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.iter
        else:
            return 0

    @property
    def launcher(self):
        """str: Way to launcher multi processes."""
        return self._launcher

    @property
    def distributed(self):
        """bool: Whether current environment is distributed."""
        return self._distributed

    @property
    def rank(self):
        """int: Rank of current process."""
        return self._rank

    @property
    def world_size(self):
        """int: Number of processes participating in the job."""
        return self._world_size

    @property
    def deterministic(self):
        """int: Whether cudnn to select deterministic algorithms."""
        return self._deterministic

    @property
    def seed(self):
        """int: A number to set random modules."""
        return self._seed

    @property
    def timestamp(self):
        """str: Timestamp when creating experiment."""
        return self._timestamp

    @property
    def hooks(self):
        """list[:obj:`Hook`]: A list of registered hooks."""
        return self._hooks

    @property
    def train_loop(self):
        """:obj:`BaseLoop`: A loop to run training."""
        if isinstance(self._train_loop, BaseLoop) or self._train_loop is None:
            return self._train_loop
        else:
            self._train_loop = self.build_train_loop(self._train_loop)
            return self._train_loop

    @property
    def val_loop(self):
        """:obj:`BaseLoop`: A loop to run validation."""
        if isinstance(self._val_loop, BaseLoop) or self._val_loop is None:
            return self._val_loop
        else:
            self._val_loop = self.build_val_loop(self._val_loop)
            return self._val_loop

    @property
    def test_loop(self):
        """:obj:`BaseLoop`: A loop to run testing."""
        if isinstance(self._test_loop, BaseLoop) or self._test_loop is None:
            return self._test_loop
        else:
            self._test_loop = self.build_test_loop(self._test_loop)
            return self._test_loop

    @property
    def train_dataloader(self):
        """The data loader for training."""
        return self.train_loop.dataloader

    @property
    def val_dataloader(self):
        """The data loader for validation."""
        return self.val_loop.dataloader

    @property
    def test_dataloader(self):
        """The data loader for testing."""
        return self.test_loop.dataloader

    @property
    def val_evaluator(self):
        """:obj:`Evaluator`: An evaluator for validation."""
        return self.val_loop.evaluator

    @property
    def test_evaluator(self):
        """:obj:`Evaluator`: An evaluator for testing."""
        return self.test_loop.evaluator

    @property
    def val_interval(self):
        """int: Interval to run validation during training."""
        return self.train_loop.val_interval

    @property
    def val_begin(self):
        """int: The epoch/iteration to start running validation during
        training."""
        return self.train_loop.val_begin

    def setup_env(self, env_cfg: Dict) -> None:
        """Setup environment.

        An example of ``env_cfg``::

            env_cfg = dict(
                cudnn_benchmark=True,
                mp_cfg=dict(
                    mp_start_method='fork',
                    opencv_num_threads=0
                ),
                dist_cfg=dict(backend='nccl', timeout=1800),
                resource_limit=4096
            )

        Args:
            env_cfg (dict): Config for setting environment.
        """
        if env_cfg.get('cudnn_benchmark'):
            torch.backends.cudnn.benchmark = True

        mp_cfg: dict = env_cfg.get('mp_cfg', {})
        set_multi_processing(**mp_cfg, distributed=self.distributed)

        # init distributed env first, since logger depends on the dist info.
        if self.distributed and not is_distributed():
            dist_cfg: dict = env_cfg.get('dist_cfg', {})
            init_dist(self.launcher, **dist_cfg)

        self._rank, self._world_size = get_dist_info()

        timestamp = torch.tensor(time.time(), dtype=torch.float64)
        # broadcast timestamp from 0 process to other processes
        broadcast(timestamp)
        self._timestamp = time.strftime('%Y%m%d_%H%M%S',
                                        time.localtime(timestamp.item()))

        # https://github.com/pytorch/pytorch/issues/973
        # set resource limit
        if platform.system() != 'Windows':
            import resource
            rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
            base_soft_limit = rlimit[0]
            hard_limit = rlimit[1]
            soft_limit = min(
                max(env_cfg.get('resource_limit', 4096), base_soft_limit),
                hard_limit)
            resource.setrlimit(resource.RLIMIT_NOFILE,
                               (soft_limit, hard_limit))

    def set_randomness(self,
                       seed,
                       diff_rank_seed: bool = False,
                       deterministic: bool = False) -> None:
        """Set random seed to guarantee reproducible results.

        Args:
            seed (int): A number to set random modules.
            diff_rank_seed (bool): Whether or not set different seeds according
                to global rank. Defaults to False.
            deterministic (bool): Whether to set the deterministic option for
                CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
                to True and `torch.backends.cudnn.benchmark` to False.
                Defaults to False.
                See https://pytorch.org/docs/stable/notes/randomness.html for
                more details.
        """
        self._deterministic = deterministic
        self._seed = set_random_seed(
            seed=seed,
            deterministic=deterministic,
            diff_rank_seed=diff_rank_seed)

    def build_logger(self,
                     log_level: Union[int, str] = 'INFO',
                     log_file: str = None,
                     **kwargs) -> MMLogger:
        """Build a global asscessable MMLogger.

        Args:
            log_level (int or str): The log level of MMLogger handlers.
                Defaults to 'INFO'.
            log_file (str, optional): Path of filename to save log.
                Defaults to None.
            **kwargs: Remaining parameters passed to ``MMLogger``.

        Returns:
            MMLogger: A MMLogger object build from ``logger``.
        """
        if log_file is None:
            log_file = osp.join(self._log_dir, f'{self.timestamp}.log')

        log_cfg = dict(log_level=log_level, log_file=log_file, **kwargs)
        log_cfg.setdefault('name', self._experiment_name)
        # `torch.compile` in PyTorch 2.0 could close all user defined handlers
        # unexpectedly. Using file mode 'a' can help prevent abnormal
        # termination of the FileHandler and ensure that the log file could
        # be continuously updated during the lifespan of the runner.
        log_cfg.setdefault('file_mode', 'a')

        return MMLogger.get_instance(**log_cfg)  # type: ignore

    def build_message_hub(self,
                          message_hub: Optional[Dict] = None) -> MessageHub:
        """Build a global asscessable MessageHub.

        Args:
            message_hub (dict, optional): A dict to build MessageHub object.
                If not specified, default config will be used to build
                MessageHub object. Defaults to None.

        Returns:
            MessageHub: A MessageHub object build from ``message_hub``.
        """
        if message_hub is None:
            message_hub = dict(name=self._experiment_name)
        elif isinstance(message_hub, dict):
            # ensure message_hub containing name key
            message_hub.setdefault('name', self._experiment_name)
        else:
            raise TypeError(
                f'message_hub should be dict or None, but got {message_hub}')

        return MessageHub.get_instance(**message_hub)

    def build_visualizer(
            self,
            visualizer: Optional[Union[Visualizer,
                                       Dict]] = None) -> Visualizer:
        """Build a global asscessable Visualizer.

        Args:
            visualizer (Visualizer or dict, optional): A Visualizer object
                or a dict to build Visualizer object. If ``visualizer`` is a
                Visualizer object, just returns itself. If not specified,
                default config will be used to build Visualizer object.
                Defaults to None.

        Returns:
            Visualizer: A Visualizer object build from ``visualizer``.
        """
        if visualizer is None:
            visualizer = dict(
                name=self._experiment_name,
                vis_backends=[dict(type='LocalVisBackend')],
                save_dir=self._log_dir)
            return Visualizer.get_instance(**visualizer)

        if isinstance(visualizer, Visualizer):
            return visualizer

        if isinstance(visualizer, dict):
            # ensure visualizer containing name key
            visualizer.setdefault('name', self._experiment_name)
            visualizer.setdefault('save_dir', self._log_dir)
            return VISUALIZERS.build(visualizer)
        else:
            raise TypeError(
                'visualizer should be Visualizer object, a dict or None, '
                f'but got {visualizer}')

    def build_model(self, model: Union[nn.Module, Dict]) -> nn.Module:
        """Build model.

        If ``model`` is a dict, it will be used to build a nn.Module object.
        Else, if ``model`` is a nn.Module object it will be returned directly.

        An example of ``model``::

            model = dict(type='ResNet')

        Args:
            model (nn.Module or dict): A ``nn.Module`` object or a dict to
                build nn.Module object. If ``model`` is a nn.Module object,
                just returns itself.

        Note:
            The returned model must implement ``train_step``, ``test_step``
            if ``runner.train`` or ``runner.test`` will be called. If
            ``runner.val`` will be called or ``val_cfg`` is configured,
            model must implement `val_step`.

        Returns:
            nn.Module: Model build from ``model``.
        """
        if isinstance(model, nn.Module):
            return model
        elif isinstance(model, dict):
            model = MODELS.build(model)
            return model  # type: ignore
        else:
            raise TypeError('model should be a nn.Module object or dict, '
                            f'but got {model}')

    def wrap_model(
            self, model_wrapper_cfg: Optional[Dict],
            model: nn.Module) -> Union[DistributedDataParallel, nn.Module]:
        """Wrap the model to :obj:`MMDistributedDataParallel` or other custom
        distributed data-parallel module wrappers.

        An example of ``model_wrapper_cfg``::

            model_wrapper_cfg = dict(
                broadcast_buffers=False,
                find_unused_parameters=False
            )

        Args:
            model_wrapper_cfg (dict, optional): Config to wrap model. If not
                specified, ``DistributedDataParallel`` will be used in
                distributed environment. Defaults to None.
            model (nn.Module): Model to be wrapped.

        Returns:
            nn.Module or DistributedDataParallel: nn.Module or subclass of
            ``DistributedDataParallel``.
        """
        if is_model_wrapper(model):
            if model_wrapper_cfg is not None:
                raise TypeError(
                    'model has been wrapped and "model_wrapper_cfg" should be '
                    f'None, but got {model_wrapper_cfg}')

            return model

        # Set `export CUDA_VISIBLE_DEVICES=-1` to enable CPU training.
        model = model.to(get_device())

        if not self.distributed:
            self.logger.info(
                'Distributed training is not used, all SyncBatchNorm (SyncBN) '
                'layers in the model will be automatically reverted to '
                'BatchNormXd layers if they are used.')
            model = revert_sync_batchnorm(model)
            return model  # type: ignore
        else:
            sync_bn = self.cfg.get('sync_bn', None)
            if sync_bn is not None:
                try:
                    model = convert_sync_batchnorm(model, sync_bn)
                except ValueError as e:
                    self.logger.error('cfg.sync_bn should be "torch" or '
                                      f'"mmcv", but got {sync_bn}')
                    raise e
        if model_wrapper_cfg is None:
            find_unused_parameters = self.cfg.get('find_unused_parameters',
                                                  False)
            # Sets the `find_unused_parameters` parameter in
            # torch.nn.parallel.DistributedDataParallel
            # TODO: may use a more elegant way to get local device ID.
            model = MMDistributedDataParallel(
                module=model,
                device_ids=[int(os.environ['LOCAL_RANK'])],
                broadcast_buffers=False,
                find_unused_parameters=find_unused_parameters)
        else:
            model_wrapper_cfg.setdefault('type', 'MMDistributedDataParallel')
            model_wrapper_type = MODEL_WRAPPERS.get(
                model_wrapper_cfg.get('type'))  # type: ignore
            default_args: dict = dict()
            if issubclass(
                    model_wrapper_type,  # type: ignore
                    DistributedDataParallel):
                default_args['device_ids'] = [int(os.environ['LOCAL_RANK'])]
            default_args['module'] = model
            model = MODEL_WRAPPERS.build(
                model_wrapper_cfg, default_args=default_args)

        return model

    def _init_model_weights(self) -> None:
        """Initialize the model weights if the model has
        :meth:`init_weights`"""
        model = self.model.module if is_model_wrapper(
            self.model) else self.model
        if hasattr(model, 'init_weights'):
            model.init_weights()
            # sync params and buffers
            for name, params in model.state_dict().items():
                broadcast(params)

    def scale_lr(self,
                 optim_wrapper: OptimWrapper,
                 auto_scale_lr: Optional[Dict] = None) -> None:
        """Automatically scaling learning rate in training according to the
        ratio of ``base_batch_size`` in ``autoscalelr_cfg`` and real batch
        size.

        It scales the learning rate linearly according to the
        `paper <https://arxiv.org/abs/1706.02677>`_.

        Note:
            ``scale_lr`` must be called after building optimizer wrappers
            and before building parameter schedulers.

        Args:
            optim_wrapper (OptimWrapper): An OptimWrapper object whose
                parameter groups' learning rate need to be scaled.
            auto_scale_lr (Dict, Optional): Config to scale the learning
                rate automatically. It includes ``base_batch_size`` and
                ``enable``. ``base_batch_size`` is the batch size that the
                optimizer lr is based on. ``enable`` is the switch to turn on
                and off the feature.
        """
        if (auto_scale_lr is None or not auto_scale_lr.get('enable', False)):
            return None

        assert 'base_batch_size' in auto_scale_lr, \
            'Lack of `base_batch_size` in `auto_scale_lr`.'
        dataloader: Union[DataLoader, Dict] = self._train_dataloader
        bs = dataloader.batch_size if isinstance(
            dataloader, DataLoader) else dataloader['batch_size']
        real_bs = self.world_size * bs
        base_bs = auto_scale_lr['base_batch_size']
        ratio = float(real_bs) / float(base_bs)
        print("\033[96m" + f'LR is set based on batch size of {base_bs} '
                         f'and the current batch size is {real_bs}. '
                         f'Scaling the original LR by {ratio}.' + "\033[0m")

        def _is_built(schedulers):
            if isinstance(schedulers, dict):
                return False if 'type' in schedulers else any(
                    _is_built(s) for s in schedulers.values())
            if isinstance(schedulers, list):
                return any(_is_built(s) for s in schedulers)
            return isinstance(schedulers, _ParamScheduler)

        if _is_built(self.param_schedulers):
            raise RuntimeError('`scale_lr` should be called before building '
                               'ParamScheduler because ParamScheduler will '
                               'store initial lr from optimizer wrappers')

        assert isinstance(optim_wrapper, OptimWrapper), \
            '`scale_lr should be called after building OptimWrapper'
        wrappers = list(optim_wrapper.values()) if isinstance(
            optim_wrapper, OptimWrapperDict) else [optim_wrapper]
        for wrapper in wrappers:
            for group in wrapper.optimizer.param_groups:
                group['lr'] = group['lr'] * ratio

    def build_optim_wrapper(
        self, optim_wrapper: Union[Optimizer, OptimWrapper, Dict]
    ) -> Union[OptimWrapper, OptimWrapperDict]:
        """Build optimizer wrapper.

        If ``optim_wrapper`` is a config dict for only one optimizer,
        the keys must contain ``optimizer``, and ``type`` is optional.
        It will build a :obj:`OptimWrapper` by default.

        If ``optim_wrapper`` is a config dict for multiple optimizers, i.e.,
        it has multiple keys and each key is for an optimizer wrapper. The
        constructor must be specified since
        :obj:`DefaultOptimizerConstructor` cannot handle the building of
        training with multiple optimizers.

        If ``optim_wrapper`` is a dict of pre-built optimizer wrappers, i.e.,
        each value of ``optim_wrapper`` represents an ``OptimWrapper``
        instance. ``build_optim_wrapper`` will directly build the
        :obj:`OptimWrapperDict` instance from ``optim_wrapper``.

        Args:
            optim_wrapper (OptimWrapper or dict): An OptimWrapper object or a
                dict to build OptimWrapper objects. If ``optim_wrapper`` is an
                OptimWrapper, just return an ``OptimizeWrapper`` instance.

        Note:
            For single optimizer training, if `optim_wrapper` is a config
            dict, `type` is optional(defaults to :obj:`OptimWrapper`) and it
            must contain `optimizer` to build the corresponding optimizer.

        Examples:
            >>> # build an optimizer
            >>> optim_wrapper_cfg = dict(type='OptimWrapper', optimizer=dict(
            ...     type='SGD', lr=0.01))
            >>> # optim_wrapper_cfg = dict(optimizer=dict(type='SGD', lr=0.01))
            >>> # is also valid.
            >>> optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg)
            >>> optim_wrapper
            Type: OptimWrapper
            accumulative_counts: 1
            optimizer:
            SGD (
            Parameter Group 0
                dampening: 0
                lr: 0.01
                momentum: 0
                nesterov: False
                weight_decay: 0
            )
            >>> # build optimizer without `type`
            >>> optim_wrapper_cfg = dict(optimizer=dict(type='SGD', lr=0.01))
            >>> optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg)
            >>> optim_wrapper
            Type: OptimWrapper
            accumulative_counts: 1
            optimizer:
            SGD (
            Parameter Group 0
                dampening: 0
                lr: 0.01
                maximize: False
                momentum: 0
                nesterov: False
                weight_decay: 0
            )
            >>> # build multiple optimizers
            >>> optim_wrapper_cfg = dict(
            ...    generator=dict(type='OptimWrapper', optimizer=dict(
            ...        type='SGD', lr=0.01)),
            ...    discriminator=dict(type='OptimWrapper', optimizer=dict(
            ...        type='Adam', lr=0.001))
            ...    # need to customize a multiple optimizer constructor
            ...    constructor='CustomMultiOptimizerConstructor',
            ...)
            >>> optim_wrapper = runner.optim_wrapper(optim_wrapper_cfg)
            >>> optim_wrapper
            name: generator
            Type: OptimWrapper
            accumulative_counts: 1
            optimizer:
            SGD (
            Parameter Group 0
                dampening: 0
                lr: 0.1
                momentum: 0
                nesterov: False
                weight_decay: 0
            )
            name: discriminator
            Type: OptimWrapper
            accumulative_counts: 1
            optimizer:
            'discriminator': Adam (
            Parameter Group 0
                dampening: 0
                lr: 0.02
                momentum: 0
                nesterov: False
                weight_decay: 0
            )

        Important:
            If you need to build multiple optimizers, you should implement a
            MultiOptimWrapperConstructor which gets parameters passed to
            corresponding optimizers and compose the ``OptimWrapperDict``.
            More details about how to customize OptimizerConstructor can be
            found at `optimizer-docs`_.

        Returns:
            OptimWrapper: Optimizer wrapper build from ``optimizer_cfg``.
        """  # noqa: E501
        if isinstance(optim_wrapper, OptimWrapper):
            return optim_wrapper
        if isinstance(optim_wrapper, (dict, ConfigDict, Config)):
            # optimizer must be defined for single optimizer training.
            optimizer = optim_wrapper.get('optimizer', None)

            # If optimizer is a built `Optimizer` instance, the optimizer
            # wrapper should be built by `OPTIM_WRAPPERS` registry.
            if isinstance(optimizer, Optimizer):
                optim_wrapper.setdefault('type', 'OptimWrapper')
                return OPTIM_WRAPPERS.build(optim_wrapper)  # type: ignore

            # If `optimizer` is not None or `constructor` is defined, it means,
            # optimizer wrapper will be built by optimizer wrapper
            # constructor. Therefore, `build_optim_wrapper` should be called.
            if optimizer is not None or 'constructor' in optim_wrapper:
                return build_optim_wrapper(self.model, optim_wrapper)
            else:
                # if `optimizer` is not defined, it should be the case of
                # training with multiple optimizers. If `constructor` is not
                # defined either, each value of `optim_wrapper` must be an
                # `OptimWrapper` instance since `DefaultOptimizerConstructor`
                # will not handle the case of training with multiple
                # optimizers. `build_optim_wrapper` will directly build the
                # `OptimWrapperDict` instance from `optim_wrapper.`
                optim_wrappers = OrderedDict()
                for name, optim in optim_wrapper.items():
                    if not isinstance(optim, OptimWrapper):
                        raise ValueError(
                            'each item mush be an optimizer object when '
                            '"type" and "constructor" are not in '
                            f'optimizer, but got {name}={optim}')
                    optim_wrappers[name] = optim
                return OptimWrapperDict(**optim_wrappers)
        else:
            raise TypeError('optimizer wrapper should be an OptimWrapper '
                            f'object or dict, but got {optim_wrapper}')

    def _build_param_scheduler(
            self, scheduler: Union[_ParamScheduler, Dict, List],
            optim_wrapper: OptimWrapper) -> List[_ParamScheduler]:
        """Build parameter schedulers for a single optimizer.

        Args:
            scheduler (_ParamScheduler or dict or list): A Param Scheduler
                object or a dict or list of dict to build parameter schedulers.
            optim_wrapper (OptimWrapper): An optimizer wrapper object is
                passed to construct ParamScheduler object.

        Returns:
            list[_ParamScheduler]: List of parameter schedulers build from
            ``scheduler``.

        Note:
            If the train loop is built, when building parameter schedulers,
            it supports setting the max epochs/iters as the default ``end``
            of schedulers, and supports converting epoch-based schedulers
            to iter-based according to the ``convert_to_iter_based`` key.
        """
        if not isinstance(scheduler, Sequence):
            schedulers = [scheduler]
        else:
            schedulers = scheduler

        param_schedulers = []
        for scheduler in schedulers:
            if isinstance(scheduler, _ParamScheduler):
                param_schedulers.append(scheduler)
            elif isinstance(scheduler, dict):
                _scheduler = copy.deepcopy(scheduler)

                # Set default end
                if isinstance(self._train_loop, BaseLoop):
                    default_end = self.max_epochs if _scheduler.get(
                        'by_epoch', True) else self.max_iters
                    _scheduler.setdefault('end', default_end)
                    self.logger.debug(
                        f'The `end` of {_scheduler["type"]} is not set. '
                        'Use the max epochs/iters of train loop as default.')

                param_schedulers.append(
                    PARAM_SCHEDULERS.build(
                        _scheduler,
                        default_args=dict(
                            optimizer=optim_wrapper,
                            epoch_length=len(self.train_dataloader))))
            else:
                raise TypeError(
                    'scheduler should be a _ParamScheduler object or dict, '
                    f'but got {scheduler}')
        return param_schedulers

    def build_param_scheduler(
            self, scheduler: Union[_ParamScheduler, Dict,
                                   List]) -> ParamSchedulerType:
        """Build parameter schedulers.

        ``build_param_scheduler`` should be called after
        ``build_optim_wrapper`` because the building logic will change
        according to the number of optimizers built by the runner.
        The cases are as below:

        - Single optimizer: When only one optimizer is built and used in the
          runner, ``build_param_scheduler`` will return a list of
          parameter schedulers.
        - Multiple optimizers: When two or more optimizers are built and used
          in runner, ``build_param_scheduler`` will return a dict containing
          the same keys with multiple optimizers and each value is a list of
          parameter schedulers. Note that, if you want different optimizers to
          use different parameter schedulers to update optimizer's
          hyper-parameters, the input parameter ``scheduler`` also needs to be
          a dict and its key are consistent with multiple optimizers.
          Otherwise, the same parameter schedulers will be used to update
          optimizer's hyper-parameters.

        Args:
            scheduler (_ParamScheduler or dict or list): A Param Scheduler
                object or a dict or list of dict to build parameter schedulers.

        Examples:
            >>> # build one scheduler
            >>> optim_cfg = dict(dict(type='SGD', lr=0.01))
            >>> runner.optim_wrapper = runner.build_optim_wrapper(
            >>>     optim_cfg)
            >>> scheduler_cfg = dict(type='MultiStepLR', milestones=[1, 2])
            >>> schedulers = runner.build_param_scheduler(scheduler_cfg)
            >>> schedulers
            [<mmengine.optim.scheduler.lr_scheduler.MultiStepLR at 0x7f70f6966290>]  # noqa: E501

            >>> # build multiple schedulers
            >>> scheduler_cfg = [
            ...    dict(type='MultiStepLR', milestones=[1, 2]),
            ...    dict(type='StepLR', step_size=1)
            ... ]
            >>> schedulers = runner.build_param_scheduler(scheduler_cfg)
            >>> schedulers
            [<mmengine.optim.scheduler.lr_scheduler.MultiStepLR at 0x7f70f60dd3d0>,  # noqa: E501
            <mmengine.optim.scheduler.lr_scheduler.StepLR at 0x7f70f6eb6150>]

        Above examples only provide the case of one optimizer and one scheduler
        or multiple schedulers. If you want to know how to set parameter
        scheduler when using multiple optimizers, you can find more examples
        `optimizer-docs`_.

        Returns:
            list[_ParamScheduler] or dict[str, list[_ParamScheduler]]: List of
            parameter schedulers or a dictionary contains list of parameter
            schedulers build from ``scheduler``.

        .. _optimizer-docs:
           https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html
        """
        param_schedulers: ParamSchedulerType
        if not isinstance(self.optim_wrapper, OptimWrapperDict):
            # Since `OptimWrapperDict` inherits from `OptimWrapper`,
            # `isinstance(self.optim_wrapper, OptimWrapper)` cannot tell
            # whether `self.optim_wrapper` is an `OptimizerWrapper` or
            # `OptimWrapperDict` instance. Therefore, here we simply check
            # self.optim_wrapper is not an `OptimWrapperDict` instance and
            # then assert it is an OptimWrapper instance.
            assert isinstance(self.optim_wrapper, OptimWrapper), (
                '`build_optimizer` should be called before'
                '`build_param_scheduler` because the latter depends '
                'on the former')
            param_schedulers = self._build_param_scheduler(
                scheduler, self.optim_wrapper)  # type: ignore
            return param_schedulers
        else:
            param_schedulers = dict()
            for name, optimizer in self.optim_wrapper.items():
                if isinstance(scheduler, dict) and 'type' not in scheduler:
                    # scheduler is a dict and each item is a ParamScheduler
                    # object or a config to build ParamScheduler objects
                    param_schedulers[name] = self._build_param_scheduler(
                        scheduler[name], optimizer)
                else:
                    param_schedulers[name] = self._build_param_scheduler(
                        scheduler, optimizer)

            return param_schedulers

    def build_evaluator(self, evaluator: Union[Dict, List,
                                               Evaluator]) -> Evaluator:
        """Build evaluator.

        Examples of ``evaluator``::

            # evaluator could be a built Evaluator instance
            evaluator = Evaluator(metrics=[ToyMetric()])

            # evaluator can also be a list of dict
            evaluator = [
                dict(type='ToyMetric1'),
                dict(type='ToyEvaluator2')
            ]

            # evaluator can also be a list of built metric
            evaluator = [ToyMetric1(), ToyMetric2()]

            # evaluator can also be a dict with key metrics
            evaluator = dict(metrics=ToyMetric())
            # metric is a list
            evaluator = dict(metrics=[ToyMetric()])

        Args:
            evaluator (Evaluator or dict or list): An Evaluator object or a
                config dict or list of config dict used to build an Evaluator.

        Returns:
            Evaluator: Evaluator build from ``evaluator``.
        """
        if isinstance(evaluator, Evaluator):
            return evaluator
        elif isinstance(evaluator, dict):
            # if `metrics` in dict keys, it means to build customized evalutor
            if 'metrics' in evaluator:
                evaluator.setdefault('type', 'Evaluator')
                return EVALUATOR.build(evaluator)
            # otherwise, default evalutor will be built
            else:
                return Evaluator(evaluator)  # type: ignore
        elif isinstance(evaluator, list):
            # use the default `Evaluator`
            return Evaluator(evaluator)  # type: ignore
        else:
            raise TypeError(
                'evaluator should be one of dict, list of dict, and Evaluator'
                f', but got {evaluator}')

    @staticmethod
    def build_dataloader(dataloader: Union[DataLoader, Dict],
                         seed: Optional[int] = None,
                         diff_rank_seed: bool = False) -> DataLoader:
        """Build dataloader.

        The method builds three components:

        - Dataset
        - Sampler
        - Dataloader

        An example of ``dataloader``::

            dataloader = dict(
                dataset=dict(type='ToyDataset'),
                sampler=dict(type='DefaultSampler', shuffle=True),
                batch_size=1,
                num_workers=9
            )

        Args:
            dataloader (DataLoader or dict): A Dataloader object or a dict to
                build Dataloader object. If ``dataloader`` is a Dataloader
                object, just returns itself.
            seed (int, optional): Random seed. Defaults to None.
            diff_rank_seed (bool): Whether or not set different seeds to
                different ranks. If True, the seed passed to sampler is set
                to None, in order to synchronize the seeds used in samplers
                across different ranks.


        Returns:
            Dataloader: DataLoader build from ``dataloader_cfg``.
        """
        if isinstance(dataloader, DataLoader):
            return dataloader

        dataloader_cfg = copy.deepcopy(dataloader)

        # build dataset
        dataset_cfg = dataloader_cfg.pop('dataset')
        if isinstance(dataset_cfg, dict):
            dataset = DATASETS.build(dataset_cfg)
            if hasattr(dataset, 'full_init'):
                dataset.full_init()
        else:
            # fallback to raise error in dataloader
            # if `dataset_cfg` is not a valid type
            dataset = dataset_cfg

        # build sampler
        sampler_cfg = dataloader_cfg.pop('sampler')
        if isinstance(sampler_cfg, dict):
            sampler_seed = None if diff_rank_seed else seed
            sampler = DATA_SAMPLERS.build(
                sampler_cfg,
                default_args=dict(dataset=dataset, seed=sampler_seed))
        else:
            # fallback to raise error in dataloader
            # if `sampler_cfg` is not a valid type
            sampler = sampler_cfg

        # build batch sampler
        batch_sampler_cfg = dataloader_cfg.pop('batch_sampler', None)
        if batch_sampler_cfg is None:
            batch_sampler = None
        elif isinstance(batch_sampler_cfg, dict):
            batch_sampler = DATA_SAMPLERS.build(
                batch_sampler_cfg,
                default_args=dict(
                    sampler=sampler,
                    batch_size=dataloader_cfg.pop('batch_size')))
        else:
            # fallback to raise error in dataloader
            # if `batch_sampler_cfg` is not a valid type
            batch_sampler = batch_sampler_cfg

        # build dataloader
        init_fn: Optional[partial]

        if 'worker_init_fn' in dataloader_cfg:
            worker_init_fn_cfg = dataloader_cfg.pop('worker_init_fn')
            worker_init_fn_type = worker_init_fn_cfg.pop('type')
            if isinstance(worker_init_fn_type, str):
                worker_init_fn = FUNCTIONS.get(worker_init_fn_type)
            elif callable(worker_init_fn_type):
                worker_init_fn = worker_init_fn_type
            else:
                raise TypeError(
                    'type of worker_init_fn should be string or callable '
                    f'object, but got {type(worker_init_fn_type)}')
            assert callable(worker_init_fn)
            init_fn = partial(worker_init_fn,
                              **worker_init_fn_cfg)  # type: ignore
        else:
            if seed is not None:
                disable_subprocess_warning = dataloader_cfg.pop(
                    'disable_subprocess_warning', False)
                assert isinstance(disable_subprocess_warning, bool), (
                    'disable_subprocess_warning should be a bool, but got '
                    f'{type(disable_subprocess_warning)}')
                init_fn = partial(
                    default_worker_init_fn,
                    num_workers=dataloader_cfg.get('num_workers'),
                    rank=get_rank(),
                    seed=seed,
                    disable_subprocess_warning=disable_subprocess_warning)
            else:
                init_fn = None

        # `persistent_workers` requires pytorch version >= 1.7
        if ('persistent_workers' in dataloader_cfg
                and digit_version(TORCH_VERSION) < digit_version('1.7.0')):
            print_log(
                '`persistent_workers` is only available when '
                'pytorch version >= 1.7',
                logger='current',
                level=logging.WARNING)
            dataloader_cfg.pop('persistent_workers')

        # The default behavior of `collat_fn` in dataloader is to
        # merge a list of samples to form a mini-batch of Tensor(s).
        # However, in mmengine, if `collate_fn` is not defined in
        # dataloader_cfg, `pseudo_collate` will only convert the list of
        # samples into a dict without stacking the batch tensor.
        collate_fn_cfg = dataloader_cfg.pop('collate_fn',
                                            dict(type='pseudo_collate'))
        if isinstance(collate_fn_cfg, dict):
            collate_fn_type = collate_fn_cfg.pop('type')
            if isinstance(collate_fn_type, str):
                collate_fn = FUNCTIONS.get(collate_fn_type)
            else:
                collate_fn = collate_fn_type
            collate_fn = partial(collate_fn, **collate_fn_cfg)  # type: ignore
        elif callable(collate_fn_cfg):
            collate_fn = collate_fn_cfg
        else:
            raise TypeError(
                'collate_fn should be a dict or callable object, but got '
                f'{collate_fn_cfg}')

        data_loader = DataLoader(
            dataset=dataset,
            sampler=sampler if batch_sampler is None else None,
            batch_sampler=batch_sampler,
            collate_fn=collate_fn,
            worker_init_fn=init_fn,
            **dataloader_cfg)
        return data_loader

    def build_train_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
        """Build training loop.

        Examples of ``loop``::

            # `EpochBasedTrainLoop` will be used
            loop = dict(by_epoch=True, max_epochs=3)

            # `IterBasedTrainLoop` will be used
            loop = dict(by_epoch=False, max_epochs=3)

            # custom training loop
            loop = dict(type='CustomTrainLoop', max_epochs=3)

        Args:
            loop (BaseLoop or dict): A training loop or a dict to build
                training loop. If ``loop`` is a training loop object, just
                returns itself.

        Returns:
            :obj:`BaseLoop`: Training loop object build from ``loop``.
        """
        if isinstance(loop, BaseLoop):
            return loop
        elif not isinstance(loop, dict):
            raise TypeError(
                f'train_loop should be a Loop object or dict, but got {loop}')

        loop_cfg = copy.deepcopy(loop)

        if 'type' in loop_cfg and 'by_epoch' in loop_cfg:
            raise RuntimeError(
                'Only one of `type` or `by_epoch` can exist in `loop_cfg`.')

        if 'type' in loop_cfg:
            loop = LOOPS.build(
                loop_cfg,
                default_args=dict(
                    runner=self, dataloader=self._train_dataloader))
        else:
            by_epoch = loop_cfg.pop('by_epoch')
            if by_epoch:
                loop = EpochBasedTrainLoop(
                    **loop_cfg, runner=self, dataloader=self._train_dataloader)
            else:
                loop = IterBasedTrainLoop(
                    **loop_cfg, runner=self, dataloader=self._train_dataloader)
        return loop  # type: ignore

    def build_val_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
        """Build validation loop.

        Examples of ``loop``:

            # `ValLoop` will be used
            loop = dict()

            # custom validation loop
            loop = dict(type='CustomValLoop')

        Args:
            loop (BaseLoop or dict): A validation loop or a dict to build
                validation loop. If ``loop`` is a validation loop object, just
                returns itself.

        Returns:
            :obj:`BaseLoop`: Validation loop object build from ``loop``.
        """
        if isinstance(loop, BaseLoop):
            return loop
        elif not isinstance(loop, dict):
            raise TypeError(
                f'val_loop should be a Loop object or dict, but got {loop}')

        loop_cfg = copy.deepcopy(loop)

        if 'type' in loop_cfg:
            loop = LOOPS.build(
                loop_cfg,
                default_args=dict(
                    runner=self,
                    dataloader=self._val_dataloader,
                    evaluator=self._val_evaluator))
        else:
            loop = ValLoop(
                **loop_cfg,
                runner=self,
                dataloader=self._val_dataloader,
                evaluator=self._val_evaluator)  # type: ignore

        return loop  # type: ignore

    def build_test_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
        """Build test loop.

        Examples of ``loop``::

            # `TestLoop` will be used
            loop = dict()

            # custom test loop
            loop = dict(type='CustomTestLoop')

        Args:
            loop (BaseLoop or dict): A test loop or a dict to build test loop.
                If ``loop`` is a test loop object, just returns itself.

        Returns:
            :obj:`BaseLoop`: Test loop object build from ``loop_cfg``.
        """
        if isinstance(loop, BaseLoop):
            return loop
        elif not isinstance(loop, dict):
            raise TypeError(
                f'test_loop should be a Loop object or dict, but got {loop}')

        loop_cfg = copy.deepcopy(loop)  # type: ignore

        if 'type' in loop_cfg:
            loop = LOOPS.build(
                loop_cfg,
                default_args=dict(
                    runner=self,
                    dataloader=self._test_dataloader,
                    evaluator=self._test_evaluator))
        else:
            loop = TestLoop(
                **loop_cfg,
                runner=self,
                dataloader=self._test_dataloader,
                evaluator=self._test_evaluator)  # type: ignore

        return loop  # type: ignore

    def build_log_processor(
            self, log_processor: Union[LogProcessor, Dict]) -> LogProcessor:
        """Build test log_processor.

        Examples of ``log_processor``:

            # `LogProcessor` will be used
            log_processor = dict()

            # custom log_processor
            log_processor = dict(type='CustomLogProcessor')

        Args:
            log_processor (LogProcessor or dict): A log processor or a dict
            to build log processor. If ``log_processor`` is a log processor
            object, just returns itself.

        Returns:
            :obj:`LogProcessor`: Log processor object build from
            ``log_processor_cfg``.
        """
        if isinstance(log_processor, LogProcessor):
            return log_processor
        elif not isinstance(log_processor, dict):
            raise TypeError(
                'log processor should be a LogProcessor object or dict, but'
                f'got {log_processor}')

        log_processor_cfg = copy.deepcopy(log_processor)  # type: ignore

        if 'type' in log_processor_cfg:
            log_processor = LOG_PROCESSORS.build(log_processor_cfg)
        else:
            log_processor = LogProcessor(**log_processor_cfg)  # type: ignore

        return log_processor  # type: ignore

    def get_hooks_info(self) -> str:
        # Get hooks info in each stage
        stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages}
        for hook in self.hooks:
            try:
                priority = Priority(hook.priority).name  # type: ignore
            except ValueError:
                priority = hook.priority  # type: ignore
            classname = hook.__class__.__name__
            hook_info = f'({priority:<12}) {classname:<35}'
            for trigger_stage in hook.get_triggered_stages():
                stage_hook_map[trigger_stage].append(hook_info)

        stage_hook_infos = []
        for stage in Hook.stages:
            hook_infos = stage_hook_map[stage]
            if len(hook_infos) > 0:
                info = f'{stage}:\n'
                info += '\n'.join(hook_infos)
                info += '\n -------------------- '
                stage_hook_infos.append(info)
        return '\n'.join(stage_hook_infos)

    def load_or_resume(self) -> None:
        """load or resume checkpoint."""
        if self._has_loaded:
            return None

        # decide to load from checkpoint or resume from checkpoint
        resume_from = None
        if self._resume and self._load_from is None:
            # auto resume from the latest checkpoint
            resume_from = find_latest_checkpoint(self.work_dir)
            self.logger.info(
                f'Auto resumed from the latest checkpoint {resume_from}.')
        elif self._resume and self._load_from is not None:
            # resume from the specified checkpoint
            resume_from = self._load_from

        if resume_from is not None:
            self.resume(resume_from)
            self._has_loaded = True
        elif self._load_from is not None:
            self.load_checkpoint(self._load_from)
            self._has_loaded = True

    def train(self) -> nn.Module:
        """Launch training.

        Returns:
            nn.Module: The model after training.
        """
        if is_model_wrapper(self.model):
            ori_model = self.model.module
        else:
            ori_model = self.model
        assert hasattr(ori_model, 'train_step'), (
            'If you want to train your model, please make sure your model '
            'has implemented `train_step`.')

        if self._val_loop is not None:
            assert hasattr(ori_model, 'val_step'), (
                'If you want to validate your model, please make sure your '
                'model has implemented `val_step`.')

        if self._train_loop is None:
            raise RuntimeError(
                '`self._train_loop` should not be None when calling train '
                'method. Please provide `train_dataloader`, `train_cfg`, '
                '`optimizer` and `param_scheduler` arguments when '
                'initializing runner.')

        self._train_loop = self.build_train_loop(
            self._train_loop)  # type: ignore

        # `build_optimizer` should be called before `build_param_scheduler`
        #  because the latter depends on the former
        self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper)
        # Automatically scaling lr by linear scaling rule
        self.scale_lr(self.optim_wrapper, self.auto_scale_lr)

        if self.param_schedulers is not None:
            self.param_schedulers = self.build_param_scheduler(  # type: ignore
                self.param_schedulers)  # type: ignore

        if self._val_loop is not None:
            self._val_loop = self.build_val_loop(
                self._val_loop)  # type: ignore
        # TODO: add a contextmanager to avoid calling `before_run` many times
        self.call_hook('before_run')

        # initialize the model weights
        self.logger.info(f'\033[96mInitializing model weights!\033[0m')
        self._init_model_weights()
        self.logger.info(f'\033[96mDone initializing model weights!\033[0m')

        # try to enable activation_checkpointing feature
        modules = self.cfg.get('activation_checkpointing', None)
        if modules is not None:
            self.logger.info(f'Enabling the "activation_checkpointing" feature'
                             f' for sub-modules: {modules}')
            turn_on_activation_checkpointing(ori_model, modules)

        # try to enable efficient_conv_bn_eval feature
        modules = self.cfg.get('efficient_conv_bn_eval', None)
        if modules is not None:
            self.logger.info(f'Enabling the "efficient_conv_bn_eval" feature'
                             f' for sub-modules: {modules}')
            turn_on_efficient_conv_bn_eval(ori_model, modules)

        # make sure checkpoint-related hooks are triggered after `before_run`
        server_name = socket.gethostname().split('.')[0]

        self.logger.info(f'\033[96mTrying to load or resume!\033[0m')
        # print(f'\033[96m{server_name}, rank:{self._rank}, Trying to load or resume!\033[0m')
        self.load_or_resume()
        self.logger.info(f'\033[96mCompleted load or resume!\033[0m')
        # print(f'\033[96m{server_name}, rank:{self._rank}, Completed load or resume!\033[0m')

        # Initiate inner count of `optim_wrapper`.
        self.optim_wrapper.initialize_count_status(
            self.model,
            self._train_loop.iter,  # type: ignore
            self._train_loop.max_iters)  # type: ignore

        # Maybe compile the model according to options in self.cfg.compile
        # This must be called **AFTER** model has been wrapped.
        self._maybe_compile('train_step')

        self.logger.info(f'\033[96mStarting training!\033[0m')
        # print(f'\033[96m{server_name}, rank:{self._rank}, Starting training!\033[0m')
        model = self.train_loop.run()  # type: ignore
        self.logger.info(f'\033[96mDone training!\033[0m')
        # print(f'\033[96m{server_name}, rank:{self._rank}, Done training!\033[0m')

        self.call_hook('after_run')
        return model

    def val(self) -> dict:
        """Launch validation.

        Returns:
            dict: A dict of metrics on validation set.
        """
        if self._val_loop is None:
            raise RuntimeError(
                '`self._val_loop` should not be None when calling val method.'
                'Please provide `val_dataloader`, `val_cfg` and '
                '`val_evaluator` arguments when initializing runner.')

        self._val_loop = self.build_val_loop(self._val_loop)  # type: ignore

        self.call_hook('before_run')

        # make sure checkpoint-related hooks are triggered after `before_run`
        self.load_or_resume()

        metrics = self.val_loop.run()  # type: ignore
        self.call_hook('after_run')
        return metrics

    def test(self) -> dict:
        """Launch test.

        Returns:
            dict: A dict of metrics on testing set.
        """
        if self._test_loop is None:
            raise RuntimeError(
                '`self._test_loop` should not be None when calling test '
                'method. Please provide `test_dataloader`, `test_cfg` and '
                '`test_evaluator` arguments when initializing runner.')

        self._test_loop = self.build_test_loop(self._test_loop)  # type: ignore

        self.call_hook('before_run')

        # make sure checkpoint-related hooks are triggered after `before_run`
        self.load_or_resume()

        metrics = self.test_loop.run()  # type: ignore
        self.call_hook('after_run')
        return metrics

    def call_hook(self, fn_name: str, **kwargs) -> None:
        """Call all hooks.

        Args:
            fn_name (str): The function name in each hook to be called, such as
                "before_train_epoch".
            **kwargs: Keyword arguments passed to hook.
        """
        for hook in self._hooks:
            # support adding additional custom hook methods
            if hasattr(hook, fn_name):
                try:
                    getattr(hook, fn_name)(self, **kwargs)
                except TypeError as e:
                    raise TypeError(f'{e} in {hook}') from None

    def register_hook(
            self,
            hook: Union[Hook, Dict],
            priority: Optional[Union[str, int, Priority]] = None) -> None:
        """Register a hook into the hook list.

        The hook will be inserted into a priority queue, with the specified
        priority (See :class:`Priority` for details of priorities).
        For hooks with the same priority, they will be triggered in the same
        order as they are registered.

        Priority of hook will be decided with the following priority:

        - ``priority`` argument. If ``priority`` is given, it will be priority
          of hook.
        - If ``hook`` argument is a dict and ``priority`` in it, the priority
          will be the value of ``hook['priority']``.
        - If ``hook`` argument is a dict but ``priority`` not in it or ``hook``
          is an instance of ``hook``, the priority will be ``hook.priority``.

        Args:
            hook (:obj:`Hook` or dict): The hook to be registered.
            priority (int or str or :obj:`Priority`, optional): Hook priority.
                Lower value means higher priority.
        """
        if not isinstance(hook, (Hook, dict)):
            raise TypeError(
                f'hook should be an instance of Hook or dict, but got {hook}')

        _priority = None
        if isinstance(hook, dict):
            if 'priority' in hook:
                _priority = hook.pop('priority')

            hook_obj = HOOKS.build(hook)
        else:
            hook_obj = hook

        if priority is not None:
            hook_obj.priority = priority
        elif _priority is not None:
            hook_obj.priority = _priority

        inserted = False
        for i in range(len(self._hooks) - 1, -1, -1):
            if get_priority(hook_obj.priority) >= get_priority(
                    self._hooks[i].priority):
                self._hooks.insert(i + 1, hook_obj)
                inserted = True
                break
        if not inserted:
            self._hooks.insert(0, hook_obj)

    def register_default_hooks(
            self,
            hooks: Optional[Dict[str, Union[Hook, Dict]]] = None) -> None:
        """Register default hooks into hook list.

        ``hooks`` will be registered into runner to execute some default
        actions like updating model parameters or saving checkpoints.

        Default hooks and their priorities:

        +----------------------+-------------------------+
        | Hooks                | Priority                |
        +======================+=========================+
        | RuntimeInfoHook      | VERY_HIGH (10)          |
        +----------------------+-------------------------+
        | IterTimerHook        | NORMAL (50)             |
        +----------------------+-------------------------+
        | DistSamplerSeedHook  | NORMAL (50)             |
        +----------------------+-------------------------+
        | LoggerHook           | BELOW_NORMAL (60)       |
        +----------------------+-------------------------+
        | ParamSchedulerHook   | LOW (70)                |
        +----------------------+-------------------------+
        | CheckpointHook       | VERY_LOW (90)           |
        +----------------------+-------------------------+

        If ``hooks`` is None, above hooks will be registered by
        default::

            default_hooks = dict(
                runtime_info=dict(type='RuntimeInfoHook'),
                timer=dict(type='IterTimerHook'),
                sampler_seed=dict(type='DistSamplerSeedHook'),
                logger=dict(type='LoggerHook'),
                param_scheduler=dict(type='ParamSchedulerHook'),
                checkpoint=dict(type='CheckpointHook', interval=1),
            )

        If not None, ``hooks`` will be merged into ``default_hooks``.
        If there are None value in default_hooks, the corresponding item will
        be popped from ``default_hooks``::

            hooks = dict(timer=None)

        The final registered default hooks will be :obj:`RuntimeInfoHook`,
        :obj:`DistSamplerSeedHook`, :obj:`LoggerHook`,
        :obj:`ParamSchedulerHook` and :obj:`CheckpointHook`.

        Args:
            hooks (dict[str, Hook or dict], optional): Default hooks or configs
                to be registered.
        """
        default_hooks: dict = dict(
            runtime_info=dict(type='RuntimeInfoHook'),
            timer=dict(type='IterTimerHook'),
            sampler_seed=dict(type='DistSamplerSeedHook'),
            logger=dict(type='LoggerHook'),
            param_scheduler=dict(type='ParamSchedulerHook'),
            checkpoint=dict(type='CheckpointHook', interval=1),
        )
        if hooks is not None:
            for name, hook in hooks.items():
                if name in default_hooks and hook is None:
                    # remove hook from _default_hooks
                    default_hooks.pop(name)
                else:
                    assert hook is not None
                    default_hooks[name] = hook

        for hook in default_hooks.values():
            self.register_hook(hook)

    def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None:
        """Register custom hooks into hook list.

        Args:
            hooks (list[Hook | dict]): List of hooks or configs to be
                registered.
        """
        for hook in hooks:
            self.register_hook(hook)

    def register_hooks(
            self,
            default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
            custom_hooks: Optional[List[Union[Hook, Dict]]] = None) -> None:
        """Register default hooks and custom hooks into hook list.

        Args:
            default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks
                to execute default actions like updating model parameters and
                saving checkpoints.  Defaults to None.
            custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
                custom actions like visualizing images processed by pipeline.
                Defaults to None.
        """
        self.register_default_hooks(default_hooks)

        if custom_hooks is not None:
            self.register_custom_hooks(custom_hooks)

    def resume(self,
               filename: str,
               resume_optimizer: bool = True,
               resume_param_scheduler: bool = True,
               map_location: Union[str, Callable] = 'default') -> None:
        """Resume model from checkpoint.

        Args:
            filename (str): Accept local filepath, URL, ``torchvision://xxx``,
                ``open-mmlab://xxx``.
            resume_optimizer (bool): Whether to resume optimizer state.
                Defaults to True.
            resume_param_scheduler (bool): Whether to resume param scheduler
                state. Defaults to True.
            map_location (str or callable):A string or a callable function to
                specifying how to remap storage locations.
                Defaults to 'default'.
        """
        server_name = socket.gethostname().split('.')[0]

        if map_location == 'default':
            device = get_device()
            checkpoint = self.load_checkpoint(filename, map_location=device)
        else:
            checkpoint = self.load_checkpoint(
                filename, map_location=map_location)

        self.train_loop._epoch = checkpoint['meta']['epoch']
        self.train_loop._iter = checkpoint['meta']['iter']

        # check whether the number of GPU used for current experiment
        # is consistent with resuming from checkpoint
        if 'config' in checkpoint['meta']:
            config = mmengine.Config.fromstring(
                checkpoint['meta']['config'], file_format='.py')
            previous_gpu_ids = config.get('gpu_ids', None)
            if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0
                    and len(previous_gpu_ids) != self._world_size):
                # TODO, should we modify the iteration?
                if (self.auto_scale_lr is None
                        or not self.auto_scale_lr.get('enable', False)):
                    raise RuntimeError(
                        'Number of GPUs used for current experiment is not '
                        'consistent with the checkpoint being resumed from. '
                        'This will result in poor performance due to the '
                        'learning rate. You must set the '
                        '`auto_scale_lr` parameter for Runner and make '
                        '`auto_scale_lr["enable"]=True`.')
                else:
                    self.logger.info(
                        'Number of GPU used for current experiment is not '
                        'consistent with resuming from checkpoint but the '
                        'leaning rate will be adjusted according to the '
                        f'setting in auto_scale_lr={self.auto_scale_lr}')

        # resume random seed
        resumed_seed = checkpoint['meta'].get('seed', None)
        current_seed = self._randomness_cfg.get('seed')
        if resumed_seed is not None and resumed_seed != current_seed:
            if current_seed is not None:
                self.logger.warning(f'The value of random seed in the '
                                    f'checkpoint "{resumed_seed}" is '
                                    f'different from the value in '
                                    f'`randomness` config "{current_seed}"')
            self._randomness_cfg.update(seed=resumed_seed)
            self.set_randomness(**self._randomness_cfg)

        resumed_dataset_meta = checkpoint['meta'].get('dataset_meta', None)
        dataset_meta = getattr(self.train_dataloader.dataset, 'metainfo', None)

        # `resumed_dataset_meta` and `dataset_meta` could be object like
        # np.ndarray, which cannot be directly judged as equal or not,
        # therefore we just compared their dumped results.
        if pickle.dumps(resumed_dataset_meta) != pickle.dumps(dataset_meta):
            self.logger.warning(
                'The dataset metainfo from the resumed checkpoint is '
                'different from the current training dataset, please '
                'check the correctness of the checkpoint or the training '
                'dataset.')

        self.message_hub.load_state_dict(checkpoint['message_hub'])

        # resume optimizer
        if 'optimizer' in checkpoint and resume_optimizer:
            self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper)
            self.optim_wrapper.load_state_dict(  # type: ignore
                checkpoint['optimizer'])

        # resume param scheduler
        if resume_param_scheduler and self.param_schedulers is None:
            self.logger.warning(
                '`resume_param_scheduler` is True but `self.param_schedulers` '
                'is None, so skip resuming parameter schedulers')
            resume_param_scheduler = False
        if 'param_schedulers' in checkpoint and resume_param_scheduler:
            self.param_schedulers = self.build_param_scheduler(  # type: ignore
                self.param_schedulers)  # type: ignore
            if isinstance(self.param_schedulers, dict):
                for name, schedulers in self.param_schedulers.items():
                    for scheduler, ckpt_scheduler in zip(
                            schedulers, checkpoint['param_schedulers'][name]):
                        scheduler.load_state_dict(ckpt_scheduler)
            else:
                for scheduler, ckpt_scheduler in zip(
                        self.param_schedulers,  # type: ignore
                        checkpoint['param_schedulers']):
                    scheduler.load_state_dict(ckpt_scheduler)

        self._has_loaded = True

        self.logger.info(f'{server_name}: resumed epoch: {self.epoch}, iter: {self.iter}')

    def load_checkpoint(self,
                        filename: str,
                        map_location: Union[str, Callable] = 'cpu',
                        strict: bool = False,
                        revise_keys: list = [(r'^module.', '')]):
        """Load checkpoint from given ``filename``.

        Args:
            filename (str): Accept local filepath, URL, ``torchvision://xxx``,
                ``open-mmlab://xxx``.
            map_location (str or callable): A string or a callable function to
                specifying how to remap storage locations.
                Defaults to 'cpu'.
            strict (bool): strict (bool): Whether to allow different params for
                the model and checkpoint.
            revise_keys (list): A list of customized keywords to modify the
                state_dict in checkpoint. Each item is a (pattern, replacement)
                pair of the regular expression operations. Defaults to strip
                the prefix 'module.' by [(r'^module\\.', '')].
        """
        checkpoint = _load_checkpoint(filename, map_location=map_location)

        # Add comments to describe the usage of `after_load_ckpt`
        self.call_hook('after_load_checkpoint', checkpoint=checkpoint)

        if is_model_wrapper(self.model):
            model = self.model.module
        else:
            model = self.model

        checkpoint = _load_checkpoint_to_model(
            model, checkpoint, strict, revise_keys=revise_keys)

        self._has_loaded = True

        self.logger.info(f'Load checkpoint from {filename}')

        return checkpoint

    @master_only
    def save_checkpoint(
        self,
        out_dir: str,
        filename: str,
        file_client_args: Optional[dict] = None,
        save_optimizer: bool = True,
        save_param_scheduler: bool = True,
        meta: Optional[dict] = None,
        by_epoch: bool = True,
        backend_args: Optional[dict] = None,
    ):
        """Save checkpoints.

        ``CheckpointHook`` invokes this method to save checkpoints
        periodically.

        Args:
            out_dir (str): The directory that checkpoints are saved.
            filename (str): The checkpoint filename.
            file_client_args (dict, optional): Arguments to instantiate a
                FileClient. See :class:`mmengine.fileio.FileClient` for
                details. Defaults to None. It will be deprecated in future.
                Please use `backend_args` instead.
            save_optimizer (bool): Whether to save the optimizer to
                the checkpoint. Defaults to True.
            save_param_scheduler (bool): Whether to save the param_scheduler
                to the checkpoint. Defaults to True.
            meta (dict, optional): The meta information to be saved in the
                checkpoint. Defaults to None.
            by_epoch (bool): Decide the number of epoch or iteration saved in
                checkpoint. Defaults to True.
            backend_args (dict, optional): Arguments to instantiate the
                prefix of uri corresponding backend. Defaults to None.
                New in v0.2.0.
        """
        if meta is None:
            meta = {}
        elif not isinstance(meta, dict):
            raise TypeError(
                f'meta should be a dict or None, but got {type(meta)}')

        if by_epoch:
            # self.epoch increments 1 after
            # `self.call_hook('after_train_epoch)` but `save_checkpoint` is
            # called by `after_train_epoch`` method of `CheckpointHook` so
            # `epoch` should be `self.epoch + 1`
            meta.setdefault('epoch', self.epoch + 1)
            meta.setdefault('iter', self.iter)
        else:
            meta.setdefault('epoch', self.epoch)
            meta.setdefault('iter', self.iter + 1)

        if file_client_args is not None:
            warnings.warn(
                '"file_client_args" will be deprecated in future. '
                'Please use "backend_args" instead', DeprecationWarning)
            if backend_args is not None:
                raise ValueError(
                    '"file_client_args" and "backend_args" cannot be set at '
                    'the same time.')

            file_client = FileClient.infer_client(file_client_args, out_dir)
            filepath = file_client.join_path(out_dir, filename)
        else:
            filepath = join_path(  # type: ignore
                out_dir, filename, backend_args=backend_args)

        meta.update(
            cfg=self.cfg.pretty_text,
            seed=self.seed,
            experiment_name=self.experiment_name,
            time=time.strftime('%Y%m%d_%H%M%S', time.localtime()),
            mmengine_version=mmengine.__version__ + get_git_hash())

        if hasattr(self.train_dataloader.dataset, 'metainfo'):
            meta.update(dataset_meta=self.train_dataloader.dataset.metainfo)

        if is_model_wrapper(self.model):
            model = self.model.module
        else:
            model = self.model

        checkpoint = {
            'meta':
            meta,
            'state_dict':
            weights_to_cpu(model.state_dict()),
            'message_hub':
            apply_to(self.message_hub.state_dict(),
                     lambda x: hasattr(x, 'cpu'), lambda x: x.cpu()),
        }
        # save optimizer state dict to checkpoint
        if save_optimizer:
            if isinstance(self.optim_wrapper, OptimWrapper):
                checkpoint['optimizer'] = apply_to(
                    self.optim_wrapper.state_dict(),
                    lambda x: hasattr(x, 'cpu'), lambda x: x.cpu())
            else:
                raise TypeError(
                    'self.optim_wrapper should be an `OptimWrapper` '
                    'or `OptimWrapperDict` instance, but got '
                    f'{self.optim_wrapper}')

        # save param scheduler state dict
        if save_param_scheduler and self.param_schedulers is None:
            self.logger.warning(
                '`save_param_scheduler` is True but `self.param_schedulers` '
                'is None, so skip saving parameter schedulers')
            save_param_scheduler = False
        if save_param_scheduler:
            if isinstance(self.param_schedulers, dict):
                checkpoint['param_schedulers'] = dict()
                for name, schedulers in self.param_schedulers.items():
                    checkpoint['param_schedulers'][name] = []
                    for scheduler in schedulers:
                        state_dict = scheduler.state_dict()
                        checkpoint['param_schedulers'][name].append(state_dict)
            else:
                checkpoint['param_schedulers'] = []
                for scheduler in self.param_schedulers:  # type: ignore
                    state_dict = scheduler.state_dict()  # type: ignore
                    checkpoint['param_schedulers'].append(state_dict)

        self.call_hook('before_save_checkpoint', checkpoint=checkpoint)
        save_checkpoint(
            checkpoint,
            filepath,
            file_client_args=file_client_args,
            backend_args=backend_args)

    @master_only
    def dump_config(self) -> None:
        """Dump config to `work_dir`."""
        if self.cfg.filename is not None:
            filename = osp.basename(self.cfg.filename)
        else:
            filename = f'{self.timestamp}.py'
        self.cfg.dump(osp.join(self.work_dir, filename))

    def _check_scheduler_cfg(
            self, param_scheduler: Optional[Union[dict, list,
                                                  _ParamScheduler]]) -> None:
        """Parse `param_scheduler` to a list of parameter schedulers, or a
        `dict` of which each value is a list of parameter schedulers.

        If only one optimizer is used, the parsed config should be a
        list of parameter scheduler configs or instances. If multiple
        optimizers are used, the parsed config should be `dict`.
        Its key should be consistent with the optimizer `dict` and its value
        should be a list of parameter scheduler configs or instances. See
        :meth:`build_param_scheduler` for more details.

        Examples:
            >>> # valid scheduler:
            >>> # empty scheduler
            >>> scheduler = None
            >>> # Single scheduler
            >>> scheduler = dict(type='MultiStepLR', milestones=[1, 2])
            >>> # Single list schedulers
            >>> scheduler = [dict(type='MultiStepLR', milestones=[1, 2]),
            >>>              dict(type='MultiStepLR', milestones=[2, 3])]
            >>> # `dict` of schedulers
            >>> scheduler = dict(linear1=dict(type='MultiStepLR', milestones=[1, 2]),
            >>>                  linear2=dict(type='MultiStepLR', milestones=[1, 2]))
            >>> # `dict` of `list` of schedulers
            >>> scheduler = dict(linear1=[dict(type='MultiStepLR', milestones=[1, 2])],
            >>>                  linear2=[dict(type='MultiStepLR', milestones=[1, 2])])
            >>> # Single built scheduler
            >>> from mmengine.optim import MultiStepLR
            >>> scheduler = MultiStepLR(milestones=[1, 2], optimizer=optimizer)
            >>> # Single built list schedulers
            >>> scheduler = [MultiStepLR(milestones=[1, 2], optimizer=optimizer)]
            >>> # dict of built scheduler
            >>> scheduler = dict(linear1=MultiStepLR(milestones=[1, 2], optimizer=optimizer),
            >>>                  linear2=MultiStepLR(milestones=[1, 2], optimizer=optimizer))
            >>> # dict of built list schedulers
            >>> scheduler = dict(linear1=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)],
            >>>                  linear2=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)])

        Args:
            param_scheduler (dict or list): The original parameter scheduler.
        """  # noqa: E501
        if param_scheduler is None:
            return
        if isinstance(param_scheduler, _ParamScheduler):
            return
        if is_seq_of(param_scheduler, _ParamScheduler):
            return

        if is_seq_of(param_scheduler, dict):
            for _param_scheduler in param_scheduler:
                assert 'type' in _param_scheduler, (
                    'Each parameter scheduler should contain the key type, '
                    f'but got {_param_scheduler}')
        elif isinstance(param_scheduler, dict):
            if 'type' not in param_scheduler:
                for key, _param_scheduler in param_scheduler.items():
                    assert isinstance(
                        _param_scheduler,
                        (dict, tuple, list, _ParamScheduler)), (
                            'Each value of `param_scheduler` should be a '
                            f'dict or a list, but got {_param_scheduler} with '
                            f'type {type(_ParamScheduler)}')

        else:
            raise TypeError(
                '`param_scheduler` should be a `_ParamScheduler`, `dict`, '
                f'list or a tuple, but got {type(param_scheduler)}. If '
                '`param_scheduler` is a list of dict, it means a list of '
                'scheduler configs for single optimizer. If it is a dict and '
                'contains key `type`, it means a scheduler config for a '
                'single optimizer. If it does not contain key `type`, it '
                'means multiple lists of schedulers for multiple optimizers.')

    def _log_env(self, env_cfg: dict) -> None:
        """Logging environment information of the current task.

        Args:
            env_cfg (dict): The environment config of the runner.
        """
        # Collect and log environment information.
        env = collect_env()
        runtime_env = OrderedDict()
        runtime_env.update(env_cfg)
        runtime_env.update(self._randomness_cfg)
        runtime_env['seed'] = self._seed
        runtime_env['Distributed launcher'] = self._launcher
        runtime_env['Distributed training'] = self._distributed
        runtime_env['GPU number'] = self._world_size

        env_info = '\n    ' + '\n    '.join(f'{k}: {v}'
                                            for k, v in env.items())
        runtime_env_info = '\n    ' + '\n    '.join(
            f'{k}: {v}' for k, v in runtime_env.items())
        dash_line = '-' * 60
        self.logger.info('\n' + dash_line + '\nSystem environment:' +
                         env_info + '\n'
                         '\nRuntime environment:' + runtime_env_info + '\n' +
                         dash_line + '\n')

        if self.cfg._cfg_dict:
            self.logger.info(f'Config:\n{self.cfg.pretty_text}')

    def _maybe_compile(self, target: str) -> None:
        """Use `torch.compile` to optimize model/wrapped_model."""
        compile_cfg = self.cfg.get('compile', None)

        if compile_cfg is None:
            # no compile options given, won't compile
            return

        if isinstance(compile_cfg, bool):
            if not compile_cfg:
                # compile=False, compilation is disabled
                return
            # compile=True, use default configurations
            compile_cfg = dict()

        assert digit_version(TORCH_VERSION) >= digit_version('2.0.0'), (
            'PyTorch >= 2.0.0 is required to enable torch.compile')
        assert isinstance(compile_cfg, dict), (
            f'`compile` should be a dict or bool, got {type(compile_cfg)}')

        func = getattr(self.model, target)
        compiled_func = torch.compile(func, **compile_cfg)
        setattr(self.model, target, compiled_func)
        self.logger.info('Model has been "compiled". The first few iterations'
                         ' will be slow, please be patient.')