File size: 17,669 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import collections.abc
import functools
import itertools
import logging
import re
import subprocess
import textwrap
import warnings
from collections import abc
from importlib import import_module
from inspect import getfullargspec, ismodule
from itertools import repeat
from typing import Any, Callable, Optional, Type, Union


# From PyTorch internals
def _ntuple(n):

    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple


def is_str(x):
    """Whether the input is an string instance.

    Note: This method is deprecated since python 2 is no longer supported.
    """
    return isinstance(x, str)


def import_modules_from_strings(imports, allow_failed_imports=False):
    """Import modules from the given list of strings.

    Args:
        imports (list | str | None): The given module names to be imported.
        allow_failed_imports (bool): If True, the failed imports will return
            None. Otherwise, an ImportError is raise. Defaults to False.

    Returns:
        list[module] | module | None: The imported modules.

    Examples:
        >>> osp, sys = import_modules_from_strings(
        ...     ['os.path', 'sys'])
        >>> import os.path as osp_
        >>> import sys as sys_
        >>> assert osp == osp_
        >>> assert sys == sys_
    """
    if not imports:
        return
    single_import = False
    if isinstance(imports, str):
        single_import = True
        imports = [imports]
    if not isinstance(imports, list):
        raise TypeError(
            f'custom_imports must be a list but got type {type(imports)}')
    imported = []
    for imp in imports:
        if not isinstance(imp, str):
            raise TypeError(
                f'{imp} is of type {type(imp)} and cannot be imported.')
        try:
            imported_tmp = import_module(imp)
        except ImportError:
            if allow_failed_imports:
                warnings.warn(f'{imp} failed to import and is ignored.',
                              UserWarning)
                imported_tmp = None
            else:
                raise ImportError(f'Failed to import {imp}')
        imported.append(imported_tmp)
    if single_import:
        imported = imported[0]
    return imported


def iter_cast(inputs, dst_type, return_type=None):
    """Cast elements of an iterable object into some type.

    Args:
        inputs (Iterable): The input object.
        dst_type (type): Destination type.
        return_type (type, optional): If specified, the output object will be
            converted to this type, otherwise an iterator.

    Returns:
        iterator or specified type: The converted object.
    """
    if not isinstance(inputs, abc.Iterable):
        raise TypeError('inputs must be an iterable object')
    if not isinstance(dst_type, type):
        raise TypeError('"dst_type" must be a valid type')

    out_iterable = map(dst_type, inputs)

    if return_type is None:
        return out_iterable
    else:
        return return_type(out_iterable)


def list_cast(inputs, dst_type):
    """Cast elements of an iterable object into a list of some type.

    A partial method of :func:`iter_cast`.
    """
    return iter_cast(inputs, dst_type, return_type=list)


def tuple_cast(inputs, dst_type):
    """Cast elements of an iterable object into a tuple of some type.

    A partial method of :func:`iter_cast`.
    """
    return iter_cast(inputs, dst_type, return_type=tuple)


def is_seq_of(seq: Any,
              expected_type: Union[Type, tuple],
              seq_type: Type = None) -> bool:
    """Check whether it is a sequence of some type.

    Args:
        seq (Sequence): The sequence to be checked.
        expected_type (type or tuple): Expected type of sequence items.
        seq_type (type, optional): Expected sequence type. Defaults to None.

    Returns:
        bool: Return True if ``seq`` is valid else False.

    Examples:
        >>> from mmengine.utils import is_seq_of
        >>> seq = ['a', 'b', 'c']
        >>> is_seq_of(seq, str)
        True
        >>> is_seq_of(seq, int)
        False
    """
    if seq_type is None:
        exp_seq_type = abc.Sequence
    else:
        assert isinstance(seq_type, type)
        exp_seq_type = seq_type
    if not isinstance(seq, exp_seq_type):
        return False
    for item in seq:
        if not isinstance(item, expected_type):
            return False
    return True


def is_list_of(seq, expected_type):
    """Check whether it is a list of some type.

    A partial method of :func:`is_seq_of`.
    """
    return is_seq_of(seq, expected_type, seq_type=list)


def is_tuple_of(seq, expected_type):
    """Check whether it is a tuple of some type.

    A partial method of :func:`is_seq_of`.
    """
    return is_seq_of(seq, expected_type, seq_type=tuple)


def slice_list(in_list, lens):
    """Slice a list into several sub lists by a list of given length.

    Args:
        in_list (list): The list to be sliced.
        lens(int or list): The expected length of each out list.

    Returns:
        list: A list of sliced list.
    """
    if isinstance(lens, int):
        assert len(in_list) % lens == 0
        lens = [lens] * int(len(in_list) / lens)
    if not isinstance(lens, list):
        raise TypeError('"indices" must be an integer or a list of integers')
    elif sum(lens) != len(in_list):
        raise ValueError('sum of lens and list length does not '
                         f'match: {sum(lens)} != {len(in_list)}')
    out_list = []
    idx = 0
    for i in range(len(lens)):
        out_list.append(in_list[idx:idx + lens[i]])
        idx += lens[i]
    return out_list


def concat_list(in_list):
    """Concatenate a list of list into a single list.

    Args:
        in_list (list): The list of list to be merged.

    Returns:
        list: The concatenated flat list.
    """
    return list(itertools.chain(*in_list))


def apply_to(data: Any, expr: Callable, apply_func: Callable):
    """Apply function to each element in dict, list or tuple that matches with
    the expression.

    For examples, if you want to convert each element in a list of dict from
    `np.ndarray` to `Tensor`. You can use the following code:

    Examples:
        >>> from mmengine.utils import apply_to
        >>> import numpy as np
        >>> import torch
        >>> data = dict(array=[np.array(1)]) # {'array': [array(1)]}
        >>> result = apply_to(data, lambda x: isinstance(x, np.ndarray), lambda x: torch.from_numpy(x))
        >>> print(result) # {'array': [tensor(1)]}

    Args:
        data (Any): Data to be applied.
        expr (Callable): Expression to tell which data should be applied with
            the function. It should return a boolean.
        apply_func (Callable): Function applied to data.

    Returns:
        Any: The data after applying.
    """  # noqa: E501
    if isinstance(data, dict):
        # Keep the original dict type
        res = type(data)()
        for key, value in data.items():
            res[key] = apply_to(value, expr, apply_func)
        return res
    elif isinstance(data, tuple) and hasattr(data, '_fields'):
        # namedtuple
        return type(data)(*(apply_to(sample, expr, apply_func) for sample in data))  # type: ignore  # noqa: E501  # yapf:disable
    elif isinstance(data, (tuple, list)):
        return type(data)(apply_to(sample, expr, apply_func) for sample in data)  # type: ignore  # noqa: E501  # yapf:disable
    elif expr(data):
        return apply_func(data)
    else:
        return data


def check_prerequisites(
        prerequisites,
        checker,
        msg_tmpl='Prerequisites "{}" are required in method "{}" but not '
                 'found, please install them first.'):  # yapf: disable
    """A decorator factory to check if prerequisites are satisfied.

    Args:
        prerequisites (str of list[str]): Prerequisites to be checked.
        checker (callable): The checker method that returns True if a
            prerequisite is meet, False otherwise.
        msg_tmpl (str): The message template with two variables.

    Returns:
        decorator: A specific decorator.
    """

    def wrap(func):

        @functools.wraps(func)
        def wrapped_func(*args, **kwargs):
            requirements = [prerequisites] if isinstance(
                prerequisites, str) else prerequisites
            missing = []
            for item in requirements:
                if not checker(item):
                    missing.append(item)
            if missing:
                print(msg_tmpl.format(', '.join(missing), func.__name__))
                raise RuntimeError('Prerequisites not meet.')
            else:
                return func(*args, **kwargs)

        return wrapped_func

    return wrap


def _check_py_package(package):
    try:
        import_module(package)
    except ImportError:
        return False
    else:
        return True


def _check_executable(cmd):
    if subprocess.call(f'which {cmd}', shell=True) != 0:
        return False
    else:
        return True


def requires_package(prerequisites):
    """A decorator to check if some python packages are installed.

    Example:
        >>> @requires_package('numpy')
        >>> func(arg1, args):
        >>>     return numpy.zeros(1)
        array([0.])
        >>> @requires_package(['numpy', 'non_package'])
        >>> func(arg1, args):
        >>>     return numpy.zeros(1)
        ImportError
    """
    return check_prerequisites(prerequisites, checker=_check_py_package)


def requires_executable(prerequisites):
    """A decorator to check if some executable files are installed.

    Example:
        >>> @requires_executable('ffmpeg')
        >>> func(arg1, args):
        >>>     print(1)
        1
    """
    return check_prerequisites(prerequisites, checker=_check_executable)


def deprecated_api_warning(name_dict: dict,
                           cls_name: Optional[str] = None) -> Callable:
    """A decorator to check if some arguments are deprecate and try to replace
    deprecate src_arg_name to dst_arg_name.

    Args:
        name_dict(dict):
            key (str): Deprecate argument names.
            val (str): Expected argument names.

    Returns:
        func: New function.
    """

    def api_warning_wrapper(old_func):

        @functools.wraps(old_func)
        def new_func(*args, **kwargs):
            # get the arg spec of the decorated method
            args_info = getfullargspec(old_func)
            # get name of the function
            func_name = old_func.__name__
            if cls_name is not None:
                func_name = f'{cls_name}.{func_name}'
            if args:
                arg_names = args_info.args[:len(args)]
                for src_arg_name, dst_arg_name in name_dict.items():
                    if src_arg_name in arg_names:
                        warnings.warn(
                            f'"{src_arg_name}" is deprecated in '
                            f'`{func_name}`, please use "{dst_arg_name}" '
                            'instead', DeprecationWarning)
                        arg_names[arg_names.index(src_arg_name)] = dst_arg_name
            if kwargs:
                for src_arg_name, dst_arg_name in name_dict.items():
                    if src_arg_name in kwargs:
                        assert dst_arg_name not in kwargs, (
                            f'The expected behavior is to replace '
                            f'the deprecated key `{src_arg_name}` to '
                            f'new key `{dst_arg_name}`, but got them '
                            f'in the arguments at the same time, which '
                            f'is confusing. `{src_arg_name} will be '
                            f'deprecated in the future, please '
                            f'use `{dst_arg_name}` instead.')

                        warnings.warn(
                            f'"{src_arg_name}" is deprecated in '
                            f'`{func_name}`, please use "{dst_arg_name}" '
                            'instead', DeprecationWarning)
                        kwargs[dst_arg_name] = kwargs.pop(src_arg_name)

            # apply converted arguments to the decorated method
            output = old_func(*args, **kwargs)
            return output

        return new_func

    return api_warning_wrapper


def is_method_overridden(method: str, base_class: type,
                         derived_class: Union[type, Any]) -> bool:
    """Check if a method of base class is overridden in derived class.

    Args:
        method (str): the method name to check.
        base_class (type): the class of the base class.
        derived_class (type | Any): the class or instance of the derived class.
    """
    assert isinstance(base_class, type), \
        "base_class doesn't accept instance, Please pass class instead."

    if not isinstance(derived_class, type):
        derived_class = derived_class.__class__

    base_method = getattr(base_class, method)
    derived_method = getattr(derived_class, method)
    return derived_method != base_method


def has_method(obj: object, method: str) -> bool:
    """Check whether the object has a method.

    Args:
        method (str): The method name to check.
        obj (object): The object to check.

    Returns:
        bool: True if the object has the method else False.
    """
    return hasattr(obj, method) and callable(getattr(obj, method))


def deprecated_function(since: str, removed_in: str,
                        instructions: str) -> Callable:
    """Marks functions as deprecated.

    Throw a warning when a deprecated function is called, and add a note in the
    docstring. Modified from https://github.com/pytorch/pytorch/blob/master/torch/onnx/_deprecation.py

    Args:
        since (str): The version when the function was first deprecated.
        removed_in (str): The version when the function will be removed.
        instructions (str): The action users should take.

    Returns:
        Callable: A new function, which will be deprecated soon.
    """  # noqa: E501
    from mmengine import print_log

    def decorator(function):

        @functools.wraps(function)
        def wrapper(*args, **kwargs):
            print_log(
                f"'{function.__module__}.{function.__name__}' "
                f'is deprecated in version {since} and will be '
                f'removed in version {removed_in}. Please {instructions}.',
                logger='current',
                level=logging.WARNING,
            )
            return function(*args, **kwargs)

        indent = '    '
        # Add a deprecation note to the docstring.
        docstring = function.__doc__ or ''
        # Add a note to the docstring.
        deprecation_note = textwrap.dedent(f"""\
            .. deprecated:: {since}
                Deprecated and will be removed in version {removed_in}.
                Please {instructions}.
            """)
        # Split docstring at first occurrence of newline
        pattern = '\n\n'
        summary_and_body = re.split(pattern, docstring, 1)

        if len(summary_and_body) > 1:
            summary, body = summary_and_body
            body = textwrap.indent(textwrap.dedent(body), indent)
            summary = '\n'.join(
                [textwrap.dedent(string) for string in summary.split('\n')])
            summary = textwrap.indent(summary, prefix=indent)
            # Dedent the body. We cannot do this with the presence of the
            # summary because the body contains leading whitespaces when the
            # summary does not.
            new_docstring_parts = [
                deprecation_note, '\n\n', summary, '\n\n', body
            ]
        else:
            summary = summary_and_body[0]
            summary = '\n'.join(
                [textwrap.dedent(string) for string in summary.split('\n')])
            summary = textwrap.indent(summary, prefix=indent)
            new_docstring_parts = [deprecation_note, '\n\n', summary]

        wrapper.__doc__ = ''.join(new_docstring_parts)

        return wrapper

    return decorator


def get_object_from_string(obj_name: str):
    """Get object from name.

    Args:
        obj_name (str): The name of the object.

    Examples:
        >>> get_object_from_string('torch.optim.sgd.SGD')
        >>> torch.optim.sgd.SGD
    """
    parts = iter(obj_name.split('.'))
    module_name = next(parts)
    # import module
    while True:
        try:
            module = import_module(module_name)
            part = next(parts)
            # mmcv.ops has nms.py and nms function at the same time. So the
            # function will have a higher priority
            obj = getattr(module, part, None)
            if obj is not None and not ismodule(obj):
                break
            module_name = f'{module_name}.{part}'
        except StopIteration:
            # if obj is a module
            return module
        except ImportError:
            return None

    # get class or attribute from module
    obj = module
    while True:
        try:
            obj = getattr(obj, part)
            part = next(parts)
        except StopIteration:
            return obj
        except AttributeError:
            return None