Spaces:
Running
on
Zero
Running
on
Zero
File size: 54,232 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import inspect
import os.path as osp
import warnings
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
if TYPE_CHECKING:
from matplotlib.font_manager import FontProperties
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from mmengine.config import Config
from mmengine.dist import master_only
from mmengine.registry import VISBACKENDS, VISUALIZERS
from mmengine.structures import BaseDataElement
from mmengine.utils import ManagerMixin, is_seq_of
from mmengine.visualization.utils import (check_type, check_type_and_length,
color_str2rgb, color_val_matplotlib,
convert_overlay_heatmap,
img_from_canvas, tensor2ndarray,
value2list, wait_continue)
from mmengine.visualization.vis_backend import BaseVisBackend
VisBackendsType = Union[List[Union[List, BaseDataElement]], BaseDataElement,
dict, None]
@VISUALIZERS.register_module()
class Visualizer(ManagerMixin):
"""MMEngine provides a Visualizer class that uses the ``Matplotlib``
library as the backend. It has the following functions:
- Basic drawing methods
- draw_bboxes: draw single or multiple bounding boxes
- draw_texts: draw single or multiple text boxes
- draw_points: draw single or multiple points
- draw_lines: draw single or multiple line segments
- draw_circles: draw single or multiple circles
- draw_polygons: draw single or multiple polygons
- draw_binary_masks: draw single or multiple binary masks
- draw_featmap: draw feature map
- Basic visualizer backend methods
- add_configs: write config to all vis storage backends
- add_graph: write model graph to all vis storage backends
- add_image: write image to all vis storage backends
- add_scalar: write scalar to all vis storage backends
- add_scalars: write scalars to all vis storage backends
- add_datasample: write datasample to all vis storage \
backends. The abstract drawing interface used by the user
- Basic info methods
- set_image: sets the original image data
- get_image: get the image data in Numpy format after drawing
- show: visualization
- close: close all resources that have been opened
- get_backend: get the specified vis backend
All the basic drawing methods support chain calls, which is convenient for
overlaydrawing and display. Each downstream algorithm library can inherit
``Visualizer`` and implement the add_datasample logic. For example,
``DetLocalVisualizer`` in MMDetection inherits from ``Visualizer``
and implements functions, such as visual detection boxes, instance masks,
and semantic segmentation maps in the add_datasample interface.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
fig_save_cfg (dict): Keyword parameters of figure for saving.
Defaults to empty dict.
fig_show_cfg (dict): Keyword parameters of figure for showing.
Defaults to empty dict.
Examples:
>>> # Basic info methods
>>> vis = Visualizer()
>>> vis.set_image(image)
>>> vis.get_image()
>>> vis.show()
>>> # Basic drawing methods
>>> vis = Visualizer(image=image)
>>> vis.draw_bboxes(np.array([0, 0, 1, 1]), edge_colors='g')
>>> vis.draw_bboxes(bbox=np.array([[1, 1, 2, 2], [2, 2, 3, 3]]),
>>> edge_colors=['g', 'r'])
>>> vis.draw_lines(x_datas=np.array([1, 3]),
>>> y_datas=np.array([1, 3]),
>>> colors='r', line_widths=1)
>>> vis.draw_lines(x_datas=np.array([[1, 3], [2, 4]]),
>>> y_datas=np.array([[1, 3], [2, 4]]),
>>> colors=['r', 'r'], line_widths=[1, 2])
>>> vis.draw_texts(text='MMEngine',
>>> position=np.array([2, 2]),
>>> colors='b')
>>> vis.draw_texts(text=['MMEngine','OpenMMLab'],
>>> position=np.array([[2, 2], [5, 5]]),
>>> colors=['b', 'b'])
>>> vis.draw_circles(circle_coord=np.array([2, 2]), radius=np.array[1])
>>> vis.draw_circles(circle_coord=np.array([[2, 2], [3, 5]),
>>> radius=np.array[1, 2], colors=['g', 'r'])
>>> square = np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
>>> vis.draw_polygons(polygons=square, edge_colors='g')
>>> squares = [np.array([[0, 0], [100, 0], [100, 100], [0, 100]]),
>>> np.array([[0, 0], [50, 0], [50, 50], [0, 50]])]
>>> vis.draw_polygons(polygons=squares, edge_colors=['g', 'r'])
>>> vis.draw_binary_masks(binary_mask, alpha=0.6)
>>> heatmap = vis.draw_featmap(featmap, img,
>>> channel_reduction='select_max')
>>> heatmap = vis.draw_featmap(featmap, img, channel_reduction=None,
>>> topk=8, arrangement=(4, 2))
>>> heatmap = vis.draw_featmap(featmap, img, channel_reduction=None,
>>> topk=-1)
>>> # chain calls
>>> vis.draw_bboxes().draw_texts().draw_circle().draw_binary_masks()
>>> # Backend related methods
>>> vis = Visualizer(vis_backends=[dict(type='LocalVisBackend')],
>>> save_dir='temp_dir')
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> vis.add_config(cfg)
>>> image=np.random.randint(0, 256, size=(10, 10, 3)).astype(np.uint8)
>>> vis.add_image('image',image)
>>> vis.add_scaler('mAP', 0.6)
>>> vis.add_scalars({'loss': 0.1,'acc':0.8})
>>> # inherit
>>> class DetLocalVisualizer(Visualizer):
>>> def add_datasample(self,
>>> name,
>>> image: np.ndarray,
>>> gt_sample:
>>> Optional['BaseDataElement'] = None,
>>> pred_sample:
>>> Optional['BaseDataElement'] = None,
>>> draw_gt: bool = True,
>>> draw_pred: bool = True,
>>> show: bool = False,
>>> wait_time: int = 0,
>>> step: int = 0) -> None:
>>> pass
"""
def __init__(
self,
name='visualizer',
image: Optional[np.ndarray] = None,
vis_backends: VisBackendsType = None,
save_dir: Optional[str] = None,
fig_save_cfg=dict(frameon=False),
fig_show_cfg=dict(frameon=False)
) -> None:
super().__init__(name)
self._dataset_meta: Optional[dict] = None
self._vis_backends: Dict[str, BaseVisBackend] = {}
if vis_backends is None:
vis_backends = []
if isinstance(vis_backends, (dict, BaseVisBackend)):
vis_backends = [vis_backends] # type: ignore
if not is_seq_of(vis_backends, (dict, BaseVisBackend)):
raise TypeError('vis_backends must be a list of dicts or a list '
'of BaseBackend instances')
if save_dir is not None:
save_dir = osp.join(save_dir, 'vis_data')
for vis_backend in vis_backends: # type: ignore
name = None
if isinstance(vis_backend, dict):
name = vis_backend.pop('name', None)
vis_backend.setdefault('save_dir', save_dir)
vis_backend = VISBACKENDS.build(vis_backend)
# If vis_backend requires `save_dir` (with no default value)
# but is initialized with None, then don't add this
# vis_backend to the visualizer.
save_dir_arg = inspect.signature(
vis_backend.__class__.__init__).parameters.get('save_dir')
if (save_dir_arg is not None
and save_dir_arg.default is save_dir_arg.empty
and getattr(vis_backend, '_save_dir') is None):
# warnings.warn(f'Failed to add {vis_backend.__class__}, please provide the `save_dir` argument.')
continue
type_name = vis_backend.__class__.__name__
name = name or type_name
if name in self._vis_backends:
raise RuntimeError(f'vis_backend name {name} already exists')
self._vis_backends[name] = vis_backend # type: ignore
self.fig_save = None
self.fig_save_cfg = fig_save_cfg
self.fig_show_cfg = fig_show_cfg
(self.fig_save_canvas, self.fig_save,
self.ax_save) = self._initialize_fig(fig_save_cfg)
self.dpi = self.fig_save.get_dpi()
if image is not None:
self.set_image(image)
@property # type: ignore
@master_only
def dataset_meta(self) -> Optional[dict]:
"""Optional[dict]: Meta info of the dataset."""
return self._dataset_meta
@dataset_meta.setter # type: ignore
@master_only
def dataset_meta(self, dataset_meta: dict) -> None:
"""Set the dataset meta info to the Visualizer."""
self._dataset_meta = dataset_meta
@master_only
def show(self,
drawn_img: Optional[np.ndarray] = None,
win_name: str = 'image',
wait_time: float = 0.,
continue_key: str = ' ',
backend: str = 'matplotlib') -> None:
"""Show the drawn image.
Args:
drawn_img (np.ndarray, optional): The image to show. If drawn_img
is None, it will show the image got by Visualizer. Defaults
to None.
win_name (str): The image title. Defaults to 'image'.
wait_time (float): Delay in seconds. 0 is the special
value that means "forever". Defaults to 0.
continue_key (str): The key for users to continue. Defaults to
the space key.
backend (str): The backend to show the image. Defaults to
'matplotlib'. `New in version 0.7.3.`
"""
if backend == 'matplotlib':
import matplotlib.pyplot as plt
is_inline = 'inline' in plt.get_backend()
img = self.get_image() if drawn_img is None else drawn_img
self._init_manager(win_name)
fig = self.manager.canvas.figure
# remove white edges by set subplot margin
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
fig.clear()
ax = fig.add_subplot()
ax.axis(False)
ax.imshow(img)
self.manager.canvas.draw()
# Find a better way for inline to show the image
if is_inline:
return fig
wait_continue(fig, timeout=wait_time, continue_key=continue_key)
elif backend == 'cv2':
# Keep images are shown in the same window, and the title of window
# will be updated with `win_name`.
cv2.namedWindow(winname=f'{id(self)}')
cv2.setWindowTitle(f'{id(self)}', win_name)
cv2.imshow(
str(id(self)),
self.get_image() if drawn_img is None else drawn_img)
cv2.waitKey(int(np.ceil(wait_time * 1000)))
else:
raise ValueError('backend should be "matplotlib" or "cv2", '
f'but got {backend} instead')
@master_only
def set_image(self, image: np.ndarray) -> None:
"""Set the image to draw.
Args:
image (np.ndarray): The image to draw.
"""
assert image is not None
image = image.astype('uint8')
self._image = image
self.width, self.height = image.shape[1], image.shape[0]
self._default_font_size = max(
np.sqrt(self.height * self.width) // 90, 10)
# add a small 1e-2 to avoid precision lost due to matplotlib's
# truncation (https://github.com/matplotlib/matplotlib/issues/15363)
self.fig_save.set_size_inches( # type: ignore
(self.width + 1e-2) / self.dpi, (self.height + 1e-2) / self.dpi)
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
self.ax_save.cla()
self.ax_save.axis(False)
self.ax_save.imshow(
image,
extent=(0, self.width, self.height, 0),
interpolation='none')
@master_only
def get_image(self) -> np.ndarray:
"""Get the drawn image. The format is RGB.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
assert self._image is not None, 'Please set image using `set_image`'
return img_from_canvas(self.fig_save_canvas) # type: ignore
def _initialize_fig(self, fig_cfg) -> tuple:
"""Build figure according to fig_cfg.
Args:
fig_cfg (dict): The config to build figure.
Returns:
tuple: build canvas figure and axes.
"""
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
fig = Figure(**fig_cfg)
ax = fig.add_subplot()
ax.axis(False)
# remove white edges by set subplot margin
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
canvas = FigureCanvasAgg(fig)
return canvas, fig, ax
def _init_manager(self, win_name: str) -> None:
"""Initialize the matplot manager.
Args:
win_name (str): The window name.
"""
from matplotlib.figure import Figure
from matplotlib.pyplot import new_figure_manager
if getattr(self, 'manager', None) is None:
self.manager = new_figure_manager(
num=1, FigureClass=Figure, **self.fig_show_cfg)
try:
self.manager.set_window_title(win_name)
except Exception:
self.manager = new_figure_manager(
num=1, FigureClass=Figure, **self.fig_show_cfg)
self.manager.set_window_title(win_name)
@master_only
def get_backend(self, name) -> 'BaseVisBackend':
"""get vis backend by name.
Args:
name (str): The name of vis backend
Returns:
BaseVisBackend: The vis backend.
"""
return self._vis_backends.get(name) # type: ignore
def _is_posion_valid(self, position: np.ndarray) -> bool:
"""Judge whether the position is in image.
Args:
position (np.ndarray): The position to judge which last dim must
be two and the format is [x, y].
Returns:
bool: Whether the position is in image.
"""
flag = (position[..., 0] < self.width).all() and \
(position[..., 0] >= 0).all() and \
(position[..., 1] < self.height).all() and \
(position[..., 1] >= 0).all()
return flag
@master_only
def draw_points(self,
positions: Union[np.ndarray, torch.Tensor],
colors: Union[str, tuple, List[str], List[tuple]] = 'g',
marker: Optional[str] = None,
sizes: Optional[Union[np.ndarray, torch.Tensor]] = None):
"""Draw single or multiple points.
Args:
positions (Union[np.ndarray, torch.Tensor]): Positions to draw.
colors (Union[str, tuple, List[str], List[tuple]]): The colors
of points. ``colors`` can have the same length with points or
just single value. If ``colors`` is single value, all the
points will have the same colors. Reference to
https://matplotlib.org/stable/gallery/color/named_colors.html
for more details. Defaults to 'g.
marker (str, optional): The marker style.
See :mod:`matplotlib.markers` for more information about
marker styles. Defaults to None.
sizes (Optional[Union[np.ndarray, torch.Tensor]]): The marker size.
Defaults to None.
"""
check_type('positions', positions, (np.ndarray, torch.Tensor))
positions = tensor2ndarray(positions)
if len(positions.shape) == 1:
positions = positions[None]
assert positions.shape[-1] == 2, (
'The shape of `positions` should be (N, 2), '
f'but got {positions.shape}')
colors = color_val_matplotlib(colors) # type: ignore
self.ax_save.scatter(
positions[:, 0], positions[:, 1], c=colors, s=sizes, marker=marker)
return self
@master_only
def draw_texts(
self,
texts: Union[str, List[str]],
positions: Union[np.ndarray, torch.Tensor],
font_sizes: Optional[Union[int, List[int]]] = None,
colors: Union[str, tuple, List[str], List[tuple]] = 'g',
vertical_alignments: Union[str, List[str]] = 'top',
horizontal_alignments: Union[str, List[str]] = 'left',
font_families: Union[str, List[str]] = 'sans-serif',
bboxes: Optional[Union[dict, List[dict]]] = None,
font_properties: Optional[Union['FontProperties',
List['FontProperties']]] = None
) -> 'Visualizer':
"""Draw single or multiple text boxes.
Args:
texts (Union[str, List[str]]): Texts to draw.
positions (Union[np.ndarray, torch.Tensor]): The position to draw
the texts, which should have the same length with texts and
each dim contain x and y.
font_sizes (Union[int, List[int]], optional): The font size of
texts. ``font_sizes`` can have the same length with texts or
just single value. If ``font_sizes`` is single value, all the
texts will have the same font size. Defaults to None.
colors (Union[str, tuple, List[str], List[tuple]]): The colors
of texts. ``colors`` can have the same length with texts or
just single value. If ``colors`` is single value, all the
texts will have the same colors. Reference to
https://matplotlib.org/stable/gallery/color/named_colors.html
for more details. Defaults to 'g.
vertical_alignments (Union[str, List[str]]): The verticalalignment
of texts. verticalalignment controls whether the y positional
argument for the text indicates the bottom, center or top side
of the text bounding box.
``vertical_alignments`` can have the same length with
texts or just single value. If ``vertical_alignments`` is
single value, all the texts will have the same
verticalalignment. verticalalignment can be 'center' or
'top', 'bottom' or 'baseline'. Defaults to 'top'.
horizontal_alignments (Union[str, List[str]]): The
horizontalalignment of texts. Horizontalalignment controls
whether the x positional argument for the text indicates the
left, center or right side of the text bounding box.
``horizontal_alignments`` can have
the same length with texts or just single value.
If ``horizontal_alignments`` is single value, all the texts
will have the same horizontalalignment. Horizontalalignment
can be 'center','right' or 'left'. Defaults to 'left'.
font_families (Union[str, List[str]]): The font family of
texts. ``font_families`` can have the same length with texts or
just single value. If ``font_families`` is single value, all
the texts will have the same font family.
font_familiy can be 'serif', 'sans-serif', 'cursive', 'fantasy'
or 'monospace'. Defaults to 'sans-serif'.
bboxes (Union[dict, List[dict]], optional): The bounding box of the
texts. If bboxes is None, there are no bounding box around
texts. ``bboxes`` can have the same length with texts or
just single value. If ``bboxes`` is single value, all
the texts will have the same bbox. Reference to
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.FancyBboxPatch.html#matplotlib.patches.FancyBboxPatch
for more details. Defaults to None.
font_properties (Union[FontProperties, List[FontProperties]], optional):
The font properties of texts. FontProperties is
a ``font_manager.FontProperties()`` object.
If you want to draw Chinese texts, you need to prepare
a font file that can show Chinese characters properly.
For example: `simhei.ttf`, `simsun.ttc`, `simkai.ttf` and so on.
Then set ``font_properties=matplotlib.font_manager.FontProperties(fname='path/to/font_file')``
``font_properties`` can have the same length with texts or
just single value. If ``font_properties`` is single value,
all the texts will have the same font properties.
Defaults to None.
`New in version 0.6.0.`
""" # noqa: E501
from matplotlib.font_manager import FontProperties
check_type('texts', texts, (str, list))
if isinstance(texts, str):
texts = [texts]
num_text = len(texts)
check_type('positions', positions, (np.ndarray, torch.Tensor))
positions = tensor2ndarray(positions)
if len(positions.shape) == 1:
positions = positions[None]
assert positions.shape == (num_text, 2), (
'`positions` should have the shape of '
f'({num_text}, 2), but got {positions.shape}')
if not self._is_posion_valid(positions):
warnings.warn(
'Warning: The text is out of bounds,'
' the drawn text may not be in the image', UserWarning)
positions = positions.tolist()
if font_sizes is None:
font_sizes = self._default_font_size
check_type_and_length('font_sizes', font_sizes, (int, float, list),
num_text)
font_sizes = value2list(font_sizes, (int, float), num_text)
check_type_and_length('colors', colors, (str, tuple, list), num_text)
colors = value2list(colors, (str, tuple), num_text)
colors = color_val_matplotlib(colors) # type: ignore
check_type_and_length('vertical_alignments', vertical_alignments,
(str, list), num_text)
vertical_alignments = value2list(vertical_alignments, str, num_text)
check_type_and_length('horizontal_alignments', horizontal_alignments,
(str, list), num_text)
horizontal_alignments = value2list(horizontal_alignments, str,
num_text)
check_type_and_length('font_families', font_families, (str, list),
num_text)
font_families = value2list(font_families, str, num_text)
if font_properties is None:
font_properties = [None for _ in range(num_text)] # type: ignore
else:
check_type_and_length('font_properties', font_properties,
(FontProperties, list), num_text)
font_properties = value2list(font_properties, FontProperties,
num_text)
if bboxes is None:
bboxes = [None for _ in range(num_text)] # type: ignore
else:
check_type_and_length('bboxes', bboxes, (dict, list), num_text)
bboxes = value2list(bboxes, dict, num_text)
for i in range(num_text):
self.ax_save.text(
positions[i][0],
positions[i][1],
texts[i],
size=font_sizes[i], # type: ignore
bbox=bboxes[i], # type: ignore
verticalalignment=vertical_alignments[i],
horizontalalignment=horizontal_alignments[i],
family=font_families[i],
fontproperties=font_properties[i],
color=colors[i])
return self
@master_only
def draw_lines(
self,
x_datas: Union[np.ndarray, torch.Tensor],
y_datas: Union[np.ndarray, torch.Tensor],
colors: Union[str, tuple, List[str], List[tuple]] = 'g',
line_styles: Union[str, List[str]] = '-',
line_widths: Union[Union[int, float], List[Union[int, float]]] = 2
) -> 'Visualizer':
"""Draw single or multiple line segments.
Args:
x_datas (Union[np.ndarray, torch.Tensor]): The x coordinate of
each line' start and end points.
y_datas (Union[np.ndarray, torch.Tensor]): The y coordinate of
each line' start and end points.
colors (Union[str, tuple, List[str], List[tuple]]): The colors of
lines. ``colors`` can have the same length with lines or just
single value. If ``colors`` is single value, all the lines
will have the same colors. Reference to
https://matplotlib.org/stable/gallery/color/named_colors.html
for more details. Defaults to 'g'.
line_styles (Union[str, List[str]]): The linestyle
of lines. ``line_styles`` can have the same length with
texts or just single value. If ``line_styles`` is single
value, all the lines will have the same linestyle.
Reference to
https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
for more details. Defaults to '-'.
line_widths (Union[Union[int, float], List[Union[int, float]]]):
The linewidth of lines. ``line_widths`` can have
the same length with lines or just single value.
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
"""
from matplotlib.collections import LineCollection
check_type('x_datas', x_datas, (np.ndarray, torch.Tensor))
x_datas = tensor2ndarray(x_datas)
check_type('y_datas', y_datas, (np.ndarray, torch.Tensor))
y_datas = tensor2ndarray(y_datas)
assert x_datas.shape == y_datas.shape, (
'`x_datas` and `y_datas` should have the same shape')
assert x_datas.shape[-1] == 2, (
f'The shape of `x_datas` should be (N, 2), but got {x_datas.shape}'
)
if len(x_datas.shape) == 1:
x_datas = x_datas[None]
y_datas = y_datas[None]
colors = color_val_matplotlib(colors) # type: ignore
lines = np.concatenate(
(x_datas.reshape(-1, 2, 1), y_datas.reshape(-1, 2, 1)), axis=-1)
if not self._is_posion_valid(lines):
warnings.warn(
'Warning: The line is out of bounds,'
' the drawn line may not be in the image', UserWarning)
line_collect = LineCollection(
lines.tolist(),
colors=colors,
linestyles=line_styles,
linewidths=line_widths)
self.ax_save.add_collection(line_collect)
return self
@master_only
def draw_circles(
self,
center: Union[np.ndarray, torch.Tensor],
radius: Union[np.ndarray, torch.Tensor],
edge_colors: Union[str, tuple, List[str], List[tuple]] = 'g',
line_styles: Union[str, List[str]] = '-',
line_widths: Union[Union[int, float], List[Union[int, float]]] = 2,
face_colors: Union[str, tuple, List[str], List[tuple]] = 'none',
alpha: Union[float, int] = 0.8,
) -> 'Visualizer':
"""Draw single or multiple circles.
Args:
center (Union[np.ndarray, torch.Tensor]): The x coordinate of
each line' start and end points.
radius (Union[np.ndarray, torch.Tensor]): The y coordinate of
each line' start and end points.
edge_colors (Union[str, tuple, List[str], List[tuple]]): The
colors of circles. ``colors`` can have the same length with
lines or just single value. If ``colors`` is single value,
all the lines will have the same colors. Reference to
https://matplotlib.org/stable/gallery/color/named_colors.html
for more details. Defaults to 'g.
line_styles (Union[str, List[str]]): The linestyle
of lines. ``line_styles`` can have the same length with
texts or just single value. If ``line_styles`` is single
value, all the lines will have the same linestyle.
Reference to
https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
for more details. Defaults to '-'.
line_widths (Union[Union[int, float], List[Union[int, float]]]):
The linewidth of lines. ``line_widths`` can have
the same length with lines or just single value.
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
face_colors (Union[str, tuple, List[str], List[tuple]]):
The face colors. Defaults to None.
alpha (Union[int, float]): The transparency of circles.
Defaults to 0.8.
"""
from matplotlib.collections import PatchCollection
from matplotlib.patches import Circle
check_type('center', center, (np.ndarray, torch.Tensor))
center = tensor2ndarray(center)
check_type('radius', radius, (np.ndarray, torch.Tensor))
radius = tensor2ndarray(radius)
if len(center.shape) == 1:
center = center[None]
assert center.shape == (radius.shape[0], 2), (
'The shape of `center` should be (radius.shape, 2), '
f'but got {center.shape}')
if not (self._is_posion_valid(center -
np.tile(radius.reshape((-1, 1)), (1, 2)))
and self._is_posion_valid(
center + np.tile(radius.reshape((-1, 1)), (1, 2)))):
warnings.warn(
'Warning: The circle is out of bounds,'
' the drawn circle may not be in the image', UserWarning)
center = center.tolist()
radius = radius.tolist()
edge_colors = color_val_matplotlib(edge_colors) # type: ignore
face_colors = color_val_matplotlib(face_colors) # type: ignore
circles = []
for i in range(len(center)):
circles.append(Circle(tuple(center[i]), radius[i]))
if isinstance(line_widths, (int, float)):
line_widths = [line_widths] * len(circles)
line_widths = [
min(max(linewidth, 1), self._default_font_size / 4)
for linewidth in line_widths
]
p = PatchCollection(
circles,
alpha=alpha,
facecolors=face_colors,
edgecolors=edge_colors,
linewidths=line_widths,
linestyles=line_styles)
self.ax_save.add_collection(p)
return self
@master_only
def draw_bboxes(
self,
bboxes: Union[np.ndarray, torch.Tensor],
edge_colors: Union[str, tuple, List[str], List[tuple]] = 'g',
line_styles: Union[str, List[str]] = '-',
line_widths: Union[Union[int, float], List[Union[int, float]]] = 2,
face_colors: Union[str, tuple, List[str], List[tuple]] = 'none',
alpha: Union[int, float] = 0.8,
) -> 'Visualizer':
"""Draw single or multiple bboxes.
Args:
bboxes (Union[np.ndarray, torch.Tensor]): The bboxes to draw with
the format of(x1,y1,x2,y2).
edge_colors (Union[str, tuple, List[str], List[tuple]]): The
colors of bboxes. ``colors`` can have the same length with
lines or just single value. If ``colors`` is single value, all
the lines will have the same colors. Refer to `matplotlib.
colors` for full list of formats that are accepted.
Defaults to 'g'.
line_styles (Union[str, List[str]]): The linestyle
of lines. ``line_styles`` can have the same length with
texts or just single value. If ``line_styles`` is single
value, all the lines will have the same linestyle.
Reference to
https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
for more details. Defaults to '-'.
line_widths (Union[Union[int, float], List[Union[int, float]]]):
The linewidth of lines. ``line_widths`` can have
the same length with lines or just single value.
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
face_colors (Union[str, tuple, List[str], List[tuple]]):
The face colors. Defaults to None.
alpha (Union[int, float]): The transparency of bboxes.
Defaults to 0.8.
"""
check_type('bboxes', bboxes, (np.ndarray, torch.Tensor))
bboxes = tensor2ndarray(bboxes)
if len(bboxes.shape) == 1:
bboxes = bboxes[None]
assert bboxes.shape[-1] == 4, (
f'The shape of `bboxes` should be (N, 4), but got {bboxes.shape}')
assert (bboxes[:, 0] <= bboxes[:, 2]).all() and (bboxes[:, 1] <=
bboxes[:, 3]).all()
if not self._is_posion_valid(bboxes.reshape((-1, 2, 2))):
warnings.warn(
'Warning: The bbox is out of bounds,'
' the drawn bbox may not be in the image', UserWarning)
poly = np.stack(
(bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 1],
bboxes[:, 2], bboxes[:, 3], bboxes[:, 0], bboxes[:, 3]),
axis=-1).reshape(-1, 4, 2)
poly = [p for p in poly]
return self.draw_polygons(
poly,
alpha=alpha,
edge_colors=edge_colors,
line_styles=line_styles,
line_widths=line_widths,
face_colors=face_colors)
@master_only
def draw_polygons(
self,
polygons: Union[Union[np.ndarray, torch.Tensor],
List[Union[np.ndarray, torch.Tensor]]],
edge_colors: Union[str, tuple, List[str], List[tuple]] = 'g',
line_styles: Union[str, List[str]] = '-',
line_widths: Union[Union[int, float], List[Union[int, float]]] = 2,
face_colors: Union[str, tuple, List[str], List[tuple]] = 'none',
alpha: Union[int, float] = 0.8,
) -> 'Visualizer':
"""Draw single or multiple bboxes.
Args:
polygons (Union[Union[np.ndarray, torch.Tensor],\
List[Union[np.ndarray, torch.Tensor]]]): The polygons to draw
with the format of (x1,y1,x2,y2,...,xn,yn).
edge_colors (Union[str, tuple, List[str], List[tuple]]): The
colors of polygons. ``colors`` can have the same length with
lines or just single value. If ``colors`` is single value,
all the lines will have the same colors. Refer to
`matplotlib.colors` for full list of formats that are accepted.
Defaults to 'g.
line_styles (Union[str, List[str]]): The linestyle
of lines. ``line_styles`` can have the same length with
texts or just single value. If ``line_styles`` is single
value, all the lines will have the same linestyle.
Reference to
https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
for more details. Defaults to '-'.
line_widths (Union[Union[int, float], List[Union[int, float]]]):
The linewidth of lines. ``line_widths`` can have
the same length with lines or just single value.
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
face_colors (Union[str, tuple, List[str], List[tuple]]):
The face colors. Defaults to None.
alpha (Union[int, float]): The transparency of polygons.
Defaults to 0.8.
"""
from matplotlib.collections import PolyCollection
check_type('polygons', polygons, (list, np.ndarray, torch.Tensor))
edge_colors = color_val_matplotlib(edge_colors) # type: ignore
face_colors = color_val_matplotlib(face_colors) # type: ignore
if isinstance(polygons, (np.ndarray, torch.Tensor)):
polygons = [polygons]
if isinstance(polygons, list):
for polygon in polygons:
assert polygon.shape[1] == 2, (
'The shape of each polygon in `polygons` should be (M, 2),'
f' but got {polygon.shape}')
polygons = [tensor2ndarray(polygon) for polygon in polygons]
for polygon in polygons:
if not self._is_posion_valid(polygon):
warnings.warn(
'Warning: The polygon is out of bounds,'
' the drawn polygon may not be in the image', UserWarning)
if isinstance(line_widths, (int, float)):
line_widths = [line_widths] * len(polygons)
line_widths = [
min(max(linewidth, 1), self._default_font_size / 4)
for linewidth in line_widths
]
polygon_collection = PolyCollection(
polygons,
alpha=alpha,
facecolor=face_colors,
linestyles=line_styles,
edgecolors=edge_colors,
linewidths=line_widths)
self.ax_save.add_collection(polygon_collection)
return self
@master_only
def draw_binary_masks(
self,
binary_masks: Union[np.ndarray, torch.Tensor],
colors: Union[str, tuple, List[str], List[tuple]] = 'g',
alphas: Union[float, List[float]] = 0.8) -> 'Visualizer':
"""Draw single or multiple binary masks.
Args:
binary_masks (np.ndarray, torch.Tensor): The binary_masks to draw
with of shape (N, H, W), where H is the image height and W is
the image width. Each value in the array is either a 0 or 1
value of uint8 type.
colors (np.ndarray): The colors which binary_masks will convert to.
``colors`` can have the same length with binary_masks or just
single value. If ``colors`` is single value, all the
binary_masks will convert to the same colors. The colors format
is RGB. Defaults to np.array([0, 255, 0]).
alphas (Union[int, List[int]]): The transparency of masks.
Defaults to 0.8.
"""
check_type('binary_masks', binary_masks, (np.ndarray, torch.Tensor))
binary_masks = tensor2ndarray(binary_masks)
assert binary_masks.dtype == np.bool_, (
'The dtype of binary_masks should be np.bool_, '
f'but got {binary_masks.dtype}')
binary_masks = binary_masks.astype('uint8') * 255
img = self.get_image()
if binary_masks.ndim == 2:
binary_masks = binary_masks[None]
assert img.shape[:2] == binary_masks.shape[
1:], '`binary_marks` must have ' \
'the same shape with image'
binary_mask_len = binary_masks.shape[0]
check_type_and_length('colors', colors, (str, tuple, list),
binary_mask_len)
colors = value2list(colors, (str, tuple), binary_mask_len)
colors = [
color_str2rgb(color) if isinstance(color, str) else color
for color in colors
]
for color in colors:
assert len(color) == 3
for channel in color:
assert 0 <= channel <= 255 # type: ignore
if isinstance(alphas, float):
alphas = [alphas] * binary_mask_len
for binary_mask, color, alpha in zip(binary_masks, colors, alphas):
binary_mask_complement = cv2.bitwise_not(binary_mask)
rgb = np.zeros_like(img)
rgb[...] = color
rgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)
img_complement = cv2.bitwise_and(
img, img, mask=binary_mask_complement)
rgb = rgb + img_complement
img = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)
self.ax_save.imshow(
img,
extent=(0, self.width, self.height, 0),
interpolation='nearest')
return self
@staticmethod
@master_only
def draw_featmap(featmap: torch.Tensor,
overlaid_image: Optional[np.ndarray] = None,
channel_reduction: Optional[str] = 'squeeze_mean',
topk: int = 20,
arrangement: Tuple[int, int] = (4, 5),
resize_shape: Optional[tuple] = None,
alpha: float = 0.5) -> np.ndarray:
"""Draw featmap.
- If `overlaid_image` is not None, the final output image will be the
weighted sum of img and featmap.
- If `resize_shape` is specified, `featmap` and `overlaid_image`
are interpolated.
- If `resize_shape` is None and `overlaid_image` is not None,
the feature map will be interpolated to the spatial size of the image
in the case where the spatial dimensions of `overlaid_image` and
`featmap` are different.
- If `channel_reduction` is "squeeze_mean" and "select_max",
it will compress featmap to single channel image and weighted
sum to `overlaid_image`.
- If `channel_reduction` is None
- If topk <= 0, featmap is assert to be one or three
channel and treated as image and will be weighted sum
to ``overlaid_image``.
- If topk > 0, it will select topk channel to show by the sum of
each channel. At the same time, you can specify the `arrangement`
to set the window layout.
Args:
featmap (torch.Tensor): The featmap to draw which format is
(C, H, W).
overlaid_image (np.ndarray, optional): The overlaid image.
Defaults to None.
channel_reduction (str, optional): Reduce multiple channels to a
single channel. The optional value is 'squeeze_mean'
or 'select_max'. Defaults to 'squeeze_mean'.
topk (int): If channel_reduction is not None and topk > 0,
it will select topk channel to show by the sum of each channel.
if topk <= 0, tensor_chw is assert to be one or three.
Defaults to 20.
arrangement (Tuple[int, int]): The arrangement of featmap when
channel_reduction is not None and topk > 0. Defaults to (4, 5).
resize_shape (tuple, optional): The shape to scale the feature map.
Defaults to None.
alpha (Union[int, List[int]]): The transparency of featmap.
Defaults to 0.5.
Returns:
np.ndarray: RGB image.
"""
import matplotlib.pyplot as plt
assert isinstance(featmap,
torch.Tensor), (f'`featmap` should be torch.Tensor,'
f' but got {type(featmap)}')
assert featmap.ndim == 3, f'Input dimension must be 3, ' \
f'but got {featmap.ndim}'
featmap = featmap.detach().cpu()
if overlaid_image is not None:
if overlaid_image.ndim == 2:
overlaid_image = cv2.cvtColor(overlaid_image,
cv2.COLOR_GRAY2RGB)
if overlaid_image.shape[:2] != featmap.shape[1:]:
warnings.warn(
f'Since the spatial dimensions of '
f'overlaid_image: {overlaid_image.shape[:2]} and '
f'featmap: {featmap.shape[1:]} are not same, '
f'the feature map will be interpolated. '
f'This may cause mismatch problems !')
if resize_shape is None:
featmap = F.interpolate(
featmap[None],
overlaid_image.shape[:2],
mode='bilinear',
align_corners=False)[0]
if resize_shape is not None:
featmap = F.interpolate(
featmap[None],
resize_shape,
mode='bilinear',
align_corners=False)[0]
if overlaid_image is not None:
overlaid_image = cv2.resize(overlaid_image, resize_shape[::-1])
if channel_reduction is not None:
assert channel_reduction in [
'squeeze_mean', 'select_max'], \
f'Mode only support "squeeze_mean", "select_max", ' \
f'but got {channel_reduction}'
if channel_reduction == 'select_max':
sum_channel_featmap = torch.sum(featmap, dim=(1, 2))
_, indices = torch.topk(sum_channel_featmap, 1)
feat_map = featmap[indices]
else:
feat_map = torch.mean(featmap, dim=0)
return convert_overlay_heatmap(feat_map, overlaid_image, alpha)
elif topk <= 0:
featmap_channel = featmap.shape[0]
assert featmap_channel in [
1, 3
], ('The input tensor channel dimension must be 1 or 3 '
'when topk is less than 1, but the channel '
f'dimension you input is {featmap_channel}, you can use the'
' channel_reduction parameter or set topk greater than '
'0 to solve the error')
return convert_overlay_heatmap(featmap, overlaid_image, alpha)
else:
row, col = arrangement
channel, height, width = featmap.shape
assert row * col >= topk, 'The product of row and col in ' \
'the `arrangement` is less than ' \
'topk, please set the ' \
'`arrangement` correctly'
# Extract the feature map of topk
topk = min(channel, topk)
sum_channel_featmap = torch.sum(featmap, dim=(1, 2))
_, indices = torch.topk(sum_channel_featmap, topk)
topk_featmap = featmap[indices]
fig = plt.figure(frameon=False)
# Set the window layout
fig.subplots_adjust(
left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
dpi = fig.get_dpi()
fig.set_size_inches((width * col + 1e-2) / dpi,
(height * row + 1e-2) / dpi)
for i in range(topk):
axes = fig.add_subplot(row, col, i + 1)
axes.axis('off')
axes.text(2, 15, f'channel: {indices[i]}', fontsize=10)
axes.imshow(
convert_overlay_heatmap(topk_featmap[i], overlaid_image,
alpha))
image = img_from_canvas(fig.canvas)
plt.close(fig)
return image
@master_only
def add_config(self, config: Config, **kwargs):
"""Record the config.
Args:
config (Config): The Config object.
"""
for vis_backend in self._vis_backends.values():
vis_backend.add_config(config, **kwargs)
@master_only
def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict],
**kwargs) -> None:
"""Record the model graph.
Args:
model (torch.nn.Module): Model to draw.
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
for vis_backend in self._vis_backends.values():
vis_backend.add_graph(model, data_batch, **kwargs)
@master_only
def add_image(self, name: str, image: np.ndarray, step: int = 0) -> None:
"""Record the image.
Args:
name (str): The image identifier.
image (np.ndarray, optional): The image to be saved. The format
should be RGB. Defaults to None.
step (int): Global step value to record. Defaults to 0.
"""
for vis_backend in self._vis_backends.values():
vis_backend.add_image(name, image, step) # type: ignore
@master_only
def add_scalar(self,
name: str,
value: Union[int, float],
step: int = 0,
**kwargs) -> None:
"""Record the scalar data.
Args:
name (str): The scalar identifier.
value (float, int): Value to save.
step (int): Global step value to record. Defaults to 0.
"""
for vis_backend in self._vis_backends.values():
vis_backend.add_scalar(name, value, step, **kwargs) # type: ignore
@master_only
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record the scalars' data.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Defaults to 0.
file_path (str, optional): The scalar's data will be
saved to the `file_path` file at the same time
if the `file_path` parameter is specified.
Defaults to None.
"""
for vis_backend in self._vis_backends.values():
vis_backend.add_scalars(scalar_dict, step, file_path, **kwargs)
@master_only
def add_datasample(self,
name,
image: np.ndarray,
data_sample: Optional['BaseDataElement'] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
step: int = 0) -> None:
"""Draw datasample."""
pass
def close(self) -> None:
"""close an opened object."""
for vis_backend in self._vis_backends.values():
vis_backend.close()
@classmethod
def get_instance(cls, name: str, **kwargs) -> 'Visualizer':
"""Make subclass can get latest created instance by
``Visualizer.get_current_instance()``.
Downstream codebase may need to get the latest created instance
without knowing the specific Visualizer type. For example, mmdetection
builds visualizer in runner and some component which cannot access
runner wants to get latest created visualizer. In this case,
the component does not know which type of visualizer has been built
and cannot get target instance. Therefore, :class:`Visualizer`
overrides the :meth:`get_instance` and its subclass will register
the created instance to :attr:`_instance_dict` additionally.
:meth:`get_current_instance` will return the latest created subclass
instance.
Examples:
>>> class DetLocalVisualizer(Visualizer):
>>> def __init__(self, name):
>>> super().__init__(name)
>>>
>>> visualizer1 = DetLocalVisualizer.get_instance('name1')
>>> visualizer2 = Visualizer.get_current_instance()
>>> visualizer3 = DetLocalVisualizer.get_current_instance()
>>> assert id(visualizer1) == id(visualizer2) == id(visualizer3)
Args:
name (str): Name of instance.
Returns:
object: Corresponding name instance.
"""
instance = super().get_instance(name, **kwargs)
Visualizer._instance_dict[name] = instance
return instance
|