File size: 17,400 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef3c8
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0c583
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0c583
28c256d
 
cc0c583
 
 
 
28c256d
 
 
 
 
cc0c583
 
 
 
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0c583
 
28c256d
 
 
 
 
 
 
 
 
 
 
 
cc0c583
 
 
 
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import os
from typing import List
import spaces
import gradio as gr
import numpy as np
import torch
import json
import tempfile
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import cv2
from gradio.themes.utils import sizes
from classes_and_palettes import (
    COCO_KPTS_COLORS,
    COCO_WHOLEBODY_KPTS_COLORS,
    GOLIATH_KPTS_COLORS,
    GOLIATH_SKELETON_INFO,
    GOLIATH_KEYPOINTS
)

import os
import sys
import subprocess
import importlib.util

def is_package_installed(package_name):
    return importlib.util.find_spec(package_name) is not None

def find_wheel(package_path):
    dist_dir = os.path.join(package_path, "dist")
    if os.path.exists(dist_dir):
        wheel_files = [f for f in os.listdir(dist_dir) if f.endswith('.whl')]
        if wheel_files:
            return os.path.join(dist_dir, wheel_files[0])
    return None

def install_from_wheel(package_name, package_path):
    wheel_file = find_wheel(package_path)
    if wheel_file:
        print(f"Installing {package_name} from wheel: {wheel_file}")
        subprocess.check_call([sys.executable, "-m", "pip", "install", wheel_file])
    else:
        print(f"{package_name} wheel not found in {package_path}. Please build it first.")
        sys.exit(1)

def install_local_packages():
    packages = [
        ("mmengine", "./external/engine"),
        ("mmcv", "./external/cv"),
        ("mmdet", "./external/det")
    ]
    
    for package_name, package_path in packages:
        if not is_package_installed(package_name):
            print(f"Installing {package_name}...")
            install_from_wheel(package_name, package_path)
        else:
            print(f"{package_name} is already installed.")

# Run the installation at the start of your app
install_local_packages()

from detector_utils import (
            adapt_mmdet_pipeline,
            init_detector,
            process_images_detector,
        )

class Config:
    ASSETS_DIR = os.path.join(os.path.dirname(__file__), 'assets')
    CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
    CHECKPOINTS = {
        "0.3b": "sapiens_0.3b_goliath_best_goliath_AP_575_torchscript.pt2",
        "0.6b": "sapiens_0.6b_goliath_best_goliath_AP_600_torchscript.pt2",
        "1b": "sapiens_1b_goliath_best_goliath_AP_640_torchscript.pt2",
    }
    DETECTION_CHECKPOINT = os.path.join(CHECKPOINTS_DIR, 'rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth')
    DETECTION_CONFIG = os.path.join(ASSETS_DIR, 'rtmdet_m_640-8xb32_coco-person_no_nms.py')

class ModelManager:
    @staticmethod
    def load_model(checkpoint_name: str):
        if checkpoint_name is None:
            return None
        checkpoint_path = os.path.join(Config.CHECKPOINTS_DIR, checkpoint_name)
        model = torch.jit.load(checkpoint_path)
        model.eval()
        model.to("cuda")
        return model

    @staticmethod
    @torch.inference_mode()
    def run_model(model, input_tensor):
        return model(input_tensor)

class ImageProcessor:
    def __init__(self):
        self.transform = transforms.Compose([
            transforms.Resize((1024, 768)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[123.5/255, 116.5/255, 103.5/255], 
                                 std=[58.5/255, 57.0/255, 57.5/255])
        ])
        self.detector = init_detector(
            Config.DETECTION_CONFIG, Config.DETECTION_CHECKPOINT, device='cpu'
        )
        self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)

    def detect_persons(self, image: Image.Image):
        # Convert PIL Image to tensor
        image = np.array(image)
        image = np.expand_dims(image, axis=0)

        # Perform person detection
        bboxes_batch = process_images_detector(
            image, 
            self.detector
        )
        bboxes = self.get_person_bboxes(bboxes_batch[0])  # Get bboxes for the first (and only) image
        
        return bboxes
    
    def get_person_bboxes(self, bboxes_batch, score_thr=0.3):
        person_bboxes = []
        for bbox in bboxes_batch:
            if len(bbox) == 5:  # [x1, y1, x2, y2, score]
                if bbox[4] > score_thr:
                    person_bboxes.append(bbox)
            elif len(bbox) == 4:  # [x1, y1, x2, y2]
                person_bboxes.append(bbox + [1.0])  # Add a default score of 1.0
        return person_bboxes

    @spaces.GPU
    @torch.inference_mode()
    def estimate_pose(self, image: Image.Image, bboxes: List[List[float]], model_name: str, kpt_threshold: float):
        pose_model = ModelManager.load_model(Config.CHECKPOINTS[model_name])
        
        result_image = image.copy()
        all_keypoints = []  # List to store keypoints for all persons

        for bbox in bboxes:
            cropped_img = self.crop_image(result_image, bbox)
            input_tensor = self.transform(cropped_img).unsqueeze(0).to("cuda")
            heatmaps = ModelManager.run_model(pose_model, input_tensor)
            keypoints = self.heatmaps_to_keypoints(heatmaps[0].cpu().numpy(), bbox)
            all_keypoints.append(keypoints)  # Collect keypoints
            result_image = self.draw_keypoints(result_image, keypoints, bbox, kpt_threshold)
        
        return result_image, all_keypoints

    def process_image(self, image: Image.Image, model_name: str, kpt_threshold: str):
        bboxes = self.detect_persons(image)
        result_image, keypoints = self.estimate_pose(image, bboxes, model_name, float(kpt_threshold))
        return result_image, keypoints

    def crop_image(self, image, bbox):
        if len(bbox) == 4:
            x1, y1, x2, y2 = map(int, bbox)
        elif len(bbox) >= 5:
            x1, y1, x2, y2, _ = map(int, bbox[:5])
        else:
            raise ValueError(f"Unexpected bbox format: {bbox}")
        
        crop = image.crop((x1, y1, x2, y2))
        return crop

    @staticmethod
    def heatmaps_to_keypoints(heatmaps, bbox):
        num_joints = heatmaps.shape[0]  # Should be 308
        keypoints = {}
        x1, y1, x2, y2 = map(int, bbox[:4])
        bbox_width = x2 - x1
        bbox_height = y2 - y1
        
        for i, name in enumerate(GOLIATH_KEYPOINTS):
            if i < num_joints:
                heatmap = heatmaps[i]
                y, x = np.unravel_index(np.argmax(heatmap), heatmap.shape)
                conf = heatmap[y, x]
                # Convert coordinates to image frame
                x_image = x * bbox_width / 192 + x1
                y_image = y * bbox_height / 256 + y1
                keypoints[name] = (float(x_image), float(y_image), float(conf))
        return keypoints

    @staticmethod
    def draw_keypoints(image, keypoints, bbox, kpt_threshold):
        image = np.array(image)

        # Handle both 4 and 5-element bounding boxes
        if len(bbox) == 4:
            x1, y1, x2, y2 = map(int, bbox)
        elif len(bbox) >= 5:
            x1, y1, x2, y2, _ = map(int, bbox[:5])
        else:
            raise ValueError(f"Unexpected bbox format: {bbox}")
                
        # Calculate adaptive radius and thickness based on bounding box size
        bbox_width = x2 - x1
        bbox_height = y2 - y1
        bbox_size = np.sqrt(bbox_width * bbox_height)
        
        radius = max(1, int(bbox_size * 0.006))  # minimum 1 pixel
        thickness = max(1, int(bbox_size * 0.006))  # minimum 1 pixel
        bbox_thickness = max(1, thickness//4)

        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), bbox_thickness)
        
        # Draw keypoints
        for i, (name, (x, y, conf)) in enumerate(keypoints.items()):
            if conf > kpt_threshold and i < len(GOLIATH_KPTS_COLORS):
                x_coord = int(x)
                y_coord = int(y)
                color = GOLIATH_KPTS_COLORS[i]
                cv2.circle(image, (x_coord, y_coord), radius, color, -1)

        # Draw skeleton
        for _, link_info in GOLIATH_SKELETON_INFO.items():
            pt1_name, pt2_name = link_info['link']
            color = link_info['color']
            
            if pt1_name in keypoints and pt2_name in keypoints:
                pt1 = keypoints[pt1_name]
                pt2 = keypoints[pt2_name]
                if pt1[2] > kpt_threshold and pt2[2] > kpt_threshold:
                    x1_coord = int(pt1[0])
                    y1_coord = int(pt1[1])
                    x2_coord = int(pt2[0])
                    y2_coord = int(pt2[1])
                    cv2.line(image, (x1_coord, y1_coord), (x2_coord, y2_coord), color, thickness=thickness)

        return Image.fromarray(image)

class GradioInterface:
    def __init__(self):
        self.image_processor = ImageProcessor()

    def create_interface(self):
        app_styles = """
        <style>
            /* Global Styles */
            body, #root {
                font-family: Helvetica, Arial, sans-serif;
                background-color: #1a1a1a;
                color: #fafafa;
            }
            /* Header Styles */
            .app-header {
                background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
                padding: 24px;
                border-radius: 8px;
                margin-bottom: 24px;
                text-align: center;
            }
            .app-title {
                font-size: 48px;
                margin: 0;
                color: #fafafa;
            }
            .app-subtitle {
                font-size: 24px;
                margin: 8px 0 16px;
                color: #fafafa;
            }
            .app-description {
                font-size: 16px;
                line-height: 1.6;
                opacity: 0.8;
                margin-bottom: 24px;
            }
            /* Button Styles */
            .publication-links {
                display: flex;
                justify-content: center;
                flex-wrap: wrap;
                gap: 8px;
                margin-bottom: 16px;
            }
            .publication-link {
                display: inline-flex;
                align-items: center;
                padding: 8px 16px;
                background-color: #333;
                color: #fff !important;
                text-decoration: none !important;
                border-radius: 20px;
                font-size: 14px;
                transition: background-color 0.3s;
            }
            .publication-link:hover {
                background-color: #555;
            }
            .publication-link i {
                margin-right: 8px;
            }
            /* Content Styles */
            .content-container {
                background-color: #2a2a2a;
                border-radius: 8px;
                padding: 24px;
                margin-bottom: 24px;
            }
            /* Image Styles */
            .image-preview img {
                max-width: 512px;
                max-height: 512px;
                margin: 0 auto;
                border-radius: 4px;
                display: block;
                object-fit: contain;  
            }
            /* Control Styles */
            .control-panel {
                background-color: #333;
                padding: 16px;
                border-radius: 8px;
                margin-top: 16px;
            }
            /* Gradio Component Overrides */
            .gr-button {
                background-color: #4a4a4a;
                color: #fff;
                border: none;
                border-radius: 4px;
                padding: 8px 16px;
                cursor: pointer;
                transition: background-color 0.3s;
            }
            .gr-button:hover {
                background-color: #5a5a5a;
            }
            .gr-input, .gr-dropdown {
                background-color: #3a3a3a;
                color: #fff;
                border: 1px solid #4a4a4a;
                border-radius: 4px;
                padding: 8px;
            }
            .gr-form {
                background-color: transparent;
            }
            .gr-panel {
                border: none;
                background-color: transparent;
            }
            /* Override any conflicting styles from Bulma */
            .button.is-normal.is-rounded.is-dark {
                color: #fff !important;
                text-decoration: none !important;
            }
        </style>
        """

        header_html = f"""
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css">
        <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
        {app_styles}
        <div class="app-header">
            <h1 class="app-title">Sapiens: Pose Estimation</h1>
            <h2 class="app-subtitle">ECCV 2024 (Oral)</h2>
            <p class="app-description">
                Meta presents Sapiens, foundation models for human tasks pretrained on 300 million human images. 
                This demo showcases the finetuned pose estimation model. <br>
            </p>
            <div class="publication-links">
                <a href="https://arxiv.org/abs/2408.12569" class="publication-link">
                    <i class="fas fa-file-pdf"></i>arXiv
                </a>
                <a href="https://github.com/facebookresearch/sapiens" class="publication-link">
                    <i class="fab fa-github"></i>Code
                </a>
                <a href="https://about.meta.com/realitylabs/codecavatars/sapiens/" class="publication-link">
                    <i class="fas fa-globe"></i>Meta
                </a>
                <a href="https://rawalkhirodkar.github.io/sapiens" class="publication-link">
                    <i class="fas fa-chart-bar"></i>Results
                </a>
            </div>
            <div class="publication-links">
                <a href="https://huggingface.co/spaces/facebook/sapiens_pose" class="publication-link">
                    <i class="fas fa-user"></i>Demo-Pose
                </a>
                <a href="https://huggingface.co/spaces/facebook/sapiens_seg" class="publication-link">
                    <i class="fas fa-puzzle-piece"></i>Demo-Seg
                </a>
                <a href="https://huggingface.co/spaces/facebook/sapiens_depth" class="publication-link">
                    <i class="fas fa-cube"></i>Demo-Depth
                </a>
                <a href="https://huggingface.co/spaces/facebook/sapiens_normal" class="publication-link">
                    <i class="fas fa-vector-square"></i>Demo-Normal
                </a>
            </div>
        </div>
        """

        js_func = """
        function refresh() {
            const url = new URL(window.location);
            if (url.searchParams.get('__theme') !== 'dark') {
                url.searchParams.set('__theme', 'dark');
                window.location.href = url.href;
            }
        }
        """

        def process_image(image, model_name, kpt_threshold):
            result_image, keypoints = self.image_processor.process_image(image, model_name, kpt_threshold)
            with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w') as json_file:
                json.dump(keypoints, json_file)
                json_file_path = json_file.name
            return result_image, json_file_path

        with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
            gr.HTML(header_html)
            with gr.Row(elem_classes="content-container"):
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
                    with gr.Row():
                        model_name = gr.Dropdown(
                            label="Model Size",
                            choices=list(Config.CHECKPOINTS.keys()),
                            value="1b",
                        )
                        kpt_threshold = gr.Dropdown(
                            label="Min Keypoint Confidence",
                            choices=["0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9"],
                            value="0.3",
                        )
                    example_model = gr.Examples(
                        inputs=input_image,
                        examples_per_page=14,
                        examples=[
                            os.path.join(Config.ASSETS_DIR, "images", img)
                            for img in os.listdir(os.path.join(Config.ASSETS_DIR, "images"))
                        ],
                    )
                with gr.Column():
                    result_image = gr.Image(label="Pose-308 Result", type="pil", elem_classes="image-preview")
                    json_output = gr.File(label="Pose-308 Output (.json)")
                    run_button = gr.Button("Run")

            run_button.click(
                fn=process_image,
                inputs=[input_image, model_name, kpt_threshold],
                outputs=[result_image, json_output],
            )
            
        return demo

def main():
    if torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

    interface = GradioInterface()
    demo = interface.create_interface()
    demo.launch(share=False)

if __name__ == "__main__":
    main()