Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,400 Bytes
28c256d 64ef3c8 28c256d cc0c583 28c256d cc0c583 28c256d cc0c583 28c256d cc0c583 28c256d cc0c583 28c256d cc0c583 28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import os
from typing import List
import spaces
import gradio as gr
import numpy as np
import torch
import json
import tempfile
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import cv2
from gradio.themes.utils import sizes
from classes_and_palettes import (
COCO_KPTS_COLORS,
COCO_WHOLEBODY_KPTS_COLORS,
GOLIATH_KPTS_COLORS,
GOLIATH_SKELETON_INFO,
GOLIATH_KEYPOINTS
)
import os
import sys
import subprocess
import importlib.util
def is_package_installed(package_name):
return importlib.util.find_spec(package_name) is not None
def find_wheel(package_path):
dist_dir = os.path.join(package_path, "dist")
if os.path.exists(dist_dir):
wheel_files = [f for f in os.listdir(dist_dir) if f.endswith('.whl')]
if wheel_files:
return os.path.join(dist_dir, wheel_files[0])
return None
def install_from_wheel(package_name, package_path):
wheel_file = find_wheel(package_path)
if wheel_file:
print(f"Installing {package_name} from wheel: {wheel_file}")
subprocess.check_call([sys.executable, "-m", "pip", "install", wheel_file])
else:
print(f"{package_name} wheel not found in {package_path}. Please build it first.")
sys.exit(1)
def install_local_packages():
packages = [
("mmengine", "./external/engine"),
("mmcv", "./external/cv"),
("mmdet", "./external/det")
]
for package_name, package_path in packages:
if not is_package_installed(package_name):
print(f"Installing {package_name}...")
install_from_wheel(package_name, package_path)
else:
print(f"{package_name} is already installed.")
# Run the installation at the start of your app
install_local_packages()
from detector_utils import (
adapt_mmdet_pipeline,
init_detector,
process_images_detector,
)
class Config:
ASSETS_DIR = os.path.join(os.path.dirname(__file__), 'assets')
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
CHECKPOINTS = {
"0.3b": "sapiens_0.3b_goliath_best_goliath_AP_575_torchscript.pt2",
"0.6b": "sapiens_0.6b_goliath_best_goliath_AP_600_torchscript.pt2",
"1b": "sapiens_1b_goliath_best_goliath_AP_640_torchscript.pt2",
}
DETECTION_CHECKPOINT = os.path.join(CHECKPOINTS_DIR, 'rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth')
DETECTION_CONFIG = os.path.join(ASSETS_DIR, 'rtmdet_m_640-8xb32_coco-person_no_nms.py')
class ModelManager:
@staticmethod
def load_model(checkpoint_name: str):
if checkpoint_name is None:
return None
checkpoint_path = os.path.join(Config.CHECKPOINTS_DIR, checkpoint_name)
model = torch.jit.load(checkpoint_path)
model.eval()
model.to("cuda")
return model
@staticmethod
@torch.inference_mode()
def run_model(model, input_tensor):
return model(input_tensor)
class ImageProcessor:
def __init__(self):
self.transform = transforms.Compose([
transforms.Resize((1024, 768)),
transforms.ToTensor(),
transforms.Normalize(mean=[123.5/255, 116.5/255, 103.5/255],
std=[58.5/255, 57.0/255, 57.5/255])
])
self.detector = init_detector(
Config.DETECTION_CONFIG, Config.DETECTION_CHECKPOINT, device='cpu'
)
self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)
def detect_persons(self, image: Image.Image):
# Convert PIL Image to tensor
image = np.array(image)
image = np.expand_dims(image, axis=0)
# Perform person detection
bboxes_batch = process_images_detector(
image,
self.detector
)
bboxes = self.get_person_bboxes(bboxes_batch[0]) # Get bboxes for the first (and only) image
return bboxes
def get_person_bboxes(self, bboxes_batch, score_thr=0.3):
person_bboxes = []
for bbox in bboxes_batch:
if len(bbox) == 5: # [x1, y1, x2, y2, score]
if bbox[4] > score_thr:
person_bboxes.append(bbox)
elif len(bbox) == 4: # [x1, y1, x2, y2]
person_bboxes.append(bbox + [1.0]) # Add a default score of 1.0
return person_bboxes
@spaces.GPU
@torch.inference_mode()
def estimate_pose(self, image: Image.Image, bboxes: List[List[float]], model_name: str, kpt_threshold: float):
pose_model = ModelManager.load_model(Config.CHECKPOINTS[model_name])
result_image = image.copy()
all_keypoints = [] # List to store keypoints for all persons
for bbox in bboxes:
cropped_img = self.crop_image(result_image, bbox)
input_tensor = self.transform(cropped_img).unsqueeze(0).to("cuda")
heatmaps = ModelManager.run_model(pose_model, input_tensor)
keypoints = self.heatmaps_to_keypoints(heatmaps[0].cpu().numpy(), bbox)
all_keypoints.append(keypoints) # Collect keypoints
result_image = self.draw_keypoints(result_image, keypoints, bbox, kpt_threshold)
return result_image, all_keypoints
def process_image(self, image: Image.Image, model_name: str, kpt_threshold: str):
bboxes = self.detect_persons(image)
result_image, keypoints = self.estimate_pose(image, bboxes, model_name, float(kpt_threshold))
return result_image, keypoints
def crop_image(self, image, bbox):
if len(bbox) == 4:
x1, y1, x2, y2 = map(int, bbox)
elif len(bbox) >= 5:
x1, y1, x2, y2, _ = map(int, bbox[:5])
else:
raise ValueError(f"Unexpected bbox format: {bbox}")
crop = image.crop((x1, y1, x2, y2))
return crop
@staticmethod
def heatmaps_to_keypoints(heatmaps, bbox):
num_joints = heatmaps.shape[0] # Should be 308
keypoints = {}
x1, y1, x2, y2 = map(int, bbox[:4])
bbox_width = x2 - x1
bbox_height = y2 - y1
for i, name in enumerate(GOLIATH_KEYPOINTS):
if i < num_joints:
heatmap = heatmaps[i]
y, x = np.unravel_index(np.argmax(heatmap), heatmap.shape)
conf = heatmap[y, x]
# Convert coordinates to image frame
x_image = x * bbox_width / 192 + x1
y_image = y * bbox_height / 256 + y1
keypoints[name] = (float(x_image), float(y_image), float(conf))
return keypoints
@staticmethod
def draw_keypoints(image, keypoints, bbox, kpt_threshold):
image = np.array(image)
# Handle both 4 and 5-element bounding boxes
if len(bbox) == 4:
x1, y1, x2, y2 = map(int, bbox)
elif len(bbox) >= 5:
x1, y1, x2, y2, _ = map(int, bbox[:5])
else:
raise ValueError(f"Unexpected bbox format: {bbox}")
# Calculate adaptive radius and thickness based on bounding box size
bbox_width = x2 - x1
bbox_height = y2 - y1
bbox_size = np.sqrt(bbox_width * bbox_height)
radius = max(1, int(bbox_size * 0.006)) # minimum 1 pixel
thickness = max(1, int(bbox_size * 0.006)) # minimum 1 pixel
bbox_thickness = max(1, thickness//4)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), bbox_thickness)
# Draw keypoints
for i, (name, (x, y, conf)) in enumerate(keypoints.items()):
if conf > kpt_threshold and i < len(GOLIATH_KPTS_COLORS):
x_coord = int(x)
y_coord = int(y)
color = GOLIATH_KPTS_COLORS[i]
cv2.circle(image, (x_coord, y_coord), radius, color, -1)
# Draw skeleton
for _, link_info in GOLIATH_SKELETON_INFO.items():
pt1_name, pt2_name = link_info['link']
color = link_info['color']
if pt1_name in keypoints and pt2_name in keypoints:
pt1 = keypoints[pt1_name]
pt2 = keypoints[pt2_name]
if pt1[2] > kpt_threshold and pt2[2] > kpt_threshold:
x1_coord = int(pt1[0])
y1_coord = int(pt1[1])
x2_coord = int(pt2[0])
y2_coord = int(pt2[1])
cv2.line(image, (x1_coord, y1_coord), (x2_coord, y2_coord), color, thickness=thickness)
return Image.fromarray(image)
class GradioInterface:
def __init__(self):
self.image_processor = ImageProcessor()
def create_interface(self):
app_styles = """
<style>
/* Global Styles */
body, #root {
font-family: Helvetica, Arial, sans-serif;
background-color: #1a1a1a;
color: #fafafa;
}
/* Header Styles */
.app-header {
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
padding: 24px;
border-radius: 8px;
margin-bottom: 24px;
text-align: center;
}
.app-title {
font-size: 48px;
margin: 0;
color: #fafafa;
}
.app-subtitle {
font-size: 24px;
margin: 8px 0 16px;
color: #fafafa;
}
.app-description {
font-size: 16px;
line-height: 1.6;
opacity: 0.8;
margin-bottom: 24px;
}
/* Button Styles */
.publication-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 16px;
}
.publication-link {
display: inline-flex;
align-items: center;
padding: 8px 16px;
background-color: #333;
color: #fff !important;
text-decoration: none !important;
border-radius: 20px;
font-size: 14px;
transition: background-color 0.3s;
}
.publication-link:hover {
background-color: #555;
}
.publication-link i {
margin-right: 8px;
}
/* Content Styles */
.content-container {
background-color: #2a2a2a;
border-radius: 8px;
padding: 24px;
margin-bottom: 24px;
}
/* Image Styles */
.image-preview img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 4px;
display: block;
object-fit: contain;
}
/* Control Styles */
.control-panel {
background-color: #333;
padding: 16px;
border-radius: 8px;
margin-top: 16px;
}
/* Gradio Component Overrides */
.gr-button {
background-color: #4a4a4a;
color: #fff;
border: none;
border-radius: 4px;
padding: 8px 16px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #5a5a5a;
}
.gr-input, .gr-dropdown {
background-color: #3a3a3a;
color: #fff;
border: 1px solid #4a4a4a;
border-radius: 4px;
padding: 8px;
}
.gr-form {
background-color: transparent;
}
.gr-panel {
border: none;
background-color: transparent;
}
/* Override any conflicting styles from Bulma */
.button.is-normal.is-rounded.is-dark {
color: #fff !important;
text-decoration: none !important;
}
</style>
"""
header_html = f"""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
{app_styles}
<div class="app-header">
<h1 class="app-title">Sapiens: Pose Estimation</h1>
<h2 class="app-subtitle">ECCV 2024 (Oral)</h2>
<p class="app-description">
Meta presents Sapiens, foundation models for human tasks pretrained on 300 million human images.
This demo showcases the finetuned pose estimation model. <br>
</p>
<div class="publication-links">
<a href="https://arxiv.org/abs/2408.12569" class="publication-link">
<i class="fas fa-file-pdf"></i>arXiv
</a>
<a href="https://github.com/facebookresearch/sapiens" class="publication-link">
<i class="fab fa-github"></i>Code
</a>
<a href="https://about.meta.com/realitylabs/codecavatars/sapiens/" class="publication-link">
<i class="fas fa-globe"></i>Meta
</a>
<a href="https://rawalkhirodkar.github.io/sapiens" class="publication-link">
<i class="fas fa-chart-bar"></i>Results
</a>
</div>
<div class="publication-links">
<a href="https://huggingface.co/spaces/facebook/sapiens_pose" class="publication-link">
<i class="fas fa-user"></i>Demo-Pose
</a>
<a href="https://huggingface.co/spaces/facebook/sapiens_seg" class="publication-link">
<i class="fas fa-puzzle-piece"></i>Demo-Seg
</a>
<a href="https://huggingface.co/spaces/facebook/sapiens_depth" class="publication-link">
<i class="fas fa-cube"></i>Demo-Depth
</a>
<a href="https://huggingface.co/spaces/facebook/sapiens_normal" class="publication-link">
<i class="fas fa-vector-square"></i>Demo-Normal
</a>
</div>
</div>
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def process_image(image, model_name, kpt_threshold):
result_image, keypoints = self.image_processor.process_image(image, model_name, kpt_threshold)
with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w') as json_file:
json.dump(keypoints, json_file)
json_file_path = json_file.name
return result_image, json_file_path
with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
gr.HTML(header_html)
with gr.Row(elem_classes="content-container"):
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
with gr.Row():
model_name = gr.Dropdown(
label="Model Size",
choices=list(Config.CHECKPOINTS.keys()),
value="1b",
)
kpt_threshold = gr.Dropdown(
label="Min Keypoint Confidence",
choices=["0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9"],
value="0.3",
)
example_model = gr.Examples(
inputs=input_image,
examples_per_page=14,
examples=[
os.path.join(Config.ASSETS_DIR, "images", img)
for img in os.listdir(os.path.join(Config.ASSETS_DIR, "images"))
],
)
with gr.Column():
result_image = gr.Image(label="Pose-308 Result", type="pil", elem_classes="image-preview")
json_output = gr.File(label="Pose-308 Output (.json)")
run_button = gr.Button("Run")
run_button.click(
fn=process_image,
inputs=[input_image, model_name, kpt_threshold],
outputs=[result_image, json_output],
)
return demo
def main():
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(share=False)
if __name__ == "__main__":
main() |