File size: 7,263 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# This script converts MOT dataset into ReID dataset.
# Official website of the MOT dataset: https://motchallenge.net/
#
# Label format of MOT dataset:
#   GTs:
#       <frame_id> # starts from 1,
#       <instance_id>, <x1>, <y1>, <w>, <h>,
#       <conf> # conf is annotated as 0 if the object is ignored,
#       <class_id>, <visibility>
#
#   DETs and Results:
#       <frame_id>, <instance_id>, <x1>, <y1>, <w>, <h>, <conf>,
#       <x>, <y>, <z> # for 3D objects
#
# Classes in MOT:
#   1: 'pedestrian'
#   2: 'person on vehicle'
#   3: 'car'
#   4: 'bicycle'
#   5: 'motorbike'
#   6: 'non motorized vehicle'
#   7: 'static person'
#   8: 'distractor'
#   9: 'occluder'
#   10: 'occluder on the ground',
#   11: 'occluder full'
#   12: 'reflection'
#
#   USELESS classes and IGNORES classes will not be selected
#   into the dataset for reid model training.
import argparse
import os
import os.path as osp
import random

import mmcv
import numpy as np
from mmengine.fileio import list_from_file
from tqdm import tqdm

USELESS = [3, 4, 5, 6, 9, 10, 11]
IGNORES = [2, 7, 8, 12, 13]


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert MOT dataset into ReID dataset.')
    parser.add_argument('-i', '--input', help='path of MOT data')
    parser.add_argument('-o', '--output', help='path to save ReID dataset')
    parser.add_argument(
        '--val-split',
        type=float,
        default=0.2,
        help='proportion of the validation dataset to the whole ReID dataset')
    parser.add_argument(
        '--vis-threshold',
        type=float,
        default=0.3,
        help='threshold of visibility for each person')
    parser.add_argument(
        '--min-per-person',
        type=int,
        default=8,
        help='minimum number of images for each person')
    parser.add_argument(
        '--max-per-person',
        type=int,
        default=1000,
        help='maxmum number of images for each person')
    return parser.parse_args()


def main():
    args = parse_args()
    if not osp.isdir(args.output):
        os.makedirs(args.output, exist_ok=True)

    in_folder = osp.join(args.input, 'train')
    video_names = os.listdir(in_folder)
    if 'MOT17' in in_folder:
        video_names = [
            video_name for video_name in video_names if 'FRCNN' in video_name
        ]
    is_mot15 = True if 'MOT15' in in_folder else False
    for video_name in tqdm(video_names):
        # load video infos
        video_folder = osp.join(in_folder, video_name)
        infos = list_from_file(f'{video_folder}/seqinfo.ini')
        # video-level infos
        assert video_name == infos[1].strip().split('=')[1]
        raw_img_folder = infos[2].strip().split('=')[1]
        raw_img_names = os.listdir(f'{video_folder}/{raw_img_folder}')
        raw_img_names = sorted(raw_img_names)
        num_raw_imgs = int(infos[4].strip().split('=')[1])
        assert num_raw_imgs == len(raw_img_names)

        reid_train_folder = osp.join(args.output, 'imgs')
        if not osp.exists(reid_train_folder):
            os.makedirs(reid_train_folder)
        gts = list_from_file(f'{video_folder}/gt/gt.txt')
        last_frame_id = -1
        for gt in gts:
            gt = gt.strip().split(',')
            frame_id, ins_id = map(int, gt[:2])
            ltwh = list(map(float, gt[2:6]))
            if is_mot15:
                class_id = 1
                visibility = 1.
            else:
                class_id = int(gt[7])
                visibility = float(gt[8])
            if class_id in USELESS:
                continue
            elif class_id in IGNORES:
                continue
            elif visibility < args.vis_threshold:
                continue
            reid_img_folder = osp.join(reid_train_folder,
                                       f'{video_name}_{ins_id:06d}')
            if not osp.exists(reid_img_folder):
                os.makedirs(reid_img_folder)
            idx = len(os.listdir(reid_img_folder))
            reid_img_name = f'{idx:06d}.jpg'
            if frame_id != last_frame_id:
                raw_img_name = raw_img_names[frame_id - 1]
                raw_img = mmcv.imread(
                    f'{video_folder}/{raw_img_folder}/{raw_img_name}')
                last_frame_id = frame_id
            xyxy = np.asarray(
                [ltwh[0], ltwh[1], ltwh[0] + ltwh[2], ltwh[1] + ltwh[3]])
            reid_img = mmcv.imcrop(raw_img, xyxy)
            mmcv.imwrite(reid_img, f'{reid_img_folder}/{reid_img_name}')

    reid_meta_folder = osp.join(args.output, 'meta')
    if not osp.exists(reid_meta_folder):
        os.makedirs(reid_meta_folder)
    reid_train_list = []
    reid_val_list = []
    reid_img_folder_names = sorted(os.listdir(reid_train_folder))
    num_ids = len(reid_img_folder_names)
    num_train_ids = int(num_ids * (1 - args.val_split))
    train_label, val_label = 0, 0
    random.seed(0)
    for reid_img_folder_name in reid_img_folder_names[:num_train_ids]:
        reid_img_names = os.listdir(
            f'{reid_train_folder}/{reid_img_folder_name}')
        # ignore ids whose number of image is less than min_per_person
        if (len(reid_img_names) < args.min_per_person):
            continue
        # downsampling when there are too many images owned by one id
        if (len(reid_img_names) > args.max_per_person):
            reid_img_names = random.sample(reid_img_names, args.max_per_person)
        # training set
        for reid_img_name in reid_img_names:
            reid_train_list.append(
                f'{reid_img_folder_name}/{reid_img_name} {train_label}\n')
        train_label += 1
    reid_entire_dataset_list = reid_train_list.copy()
    for reid_img_folder_name in reid_img_folder_names[num_train_ids:]:
        reid_img_names = os.listdir(
            f'{reid_train_folder}/{reid_img_folder_name}')
        # ignore ids whose number of image is less than min_per_person
        if (len(reid_img_names) < args.min_per_person):
            continue
        # downsampling when there are too many images owned by one id
        if (len(reid_img_names) > args.max_per_person):
            reid_img_names = random.sample(reid_img_names, args.max_per_person)
        for reid_img_name in reid_img_names:
            # validation set
            reid_val_list.append(
                f'{reid_img_folder_name}/{reid_img_name} {val_label}\n')
            reid_entire_dataset_list.append(
                f'{reid_img_folder_name}/{reid_img_name} '
                f'{train_label + val_label}\n')
        val_label += 1
    with open(
            osp.join(reid_meta_folder,
                     f'train_{int(100 * (1 - args.val_split))}.txt'),
            'w') as f:
        f.writelines(reid_train_list)
    with open(
            osp.join(reid_meta_folder, f'val_{int(100 * args.val_split)}.txt'),
            'w') as f:
        f.writelines(reid_val_list)
    with open(osp.join(reid_meta_folder, 'train.txt'), 'w') as f:
        f.writelines(reid_entire_dataset_list)


if __name__ == '__main__':
    main()