Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,743 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import copy
import os
import os.path as osp
from collections import defaultdict
import mmengine
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser(
description='YouTube-VIS to COCO Video format')
parser.add_argument(
'-i',
'--input',
help='root directory of YouTube-VIS annotations',
)
parser.add_argument(
'-o',
'--output',
help='directory to save coco formatted label file',
)
parser.add_argument(
'--version',
choices=['2019', '2021'],
help='The version of YouTube-VIS Dataset',
)
return parser.parse_args()
def convert_vis(ann_dir, save_dir, dataset_version, mode='train'):
"""Convert YouTube-VIS dataset in COCO style.
Args:
ann_dir (str): The path of YouTube-VIS dataset.
save_dir (str): The path to save `VIS`.
dataset_version (str): The version of dataset. Options are '2019',
'2021'.
mode (str): Convert train dataset or validation dataset or test
dataset. Options are 'train', 'valid', 'test'. Default: 'train'.
"""
assert dataset_version in ['2019', '2021']
assert mode in ['train', 'valid', 'test']
VIS = defaultdict(list)
records = dict(vid_id=1, img_id=1, ann_id=1, global_instance_id=1)
obj_num_classes = dict()
if dataset_version == '2019':
official_anns = mmengine.load(osp.join(ann_dir, f'{mode}.json'))
elif dataset_version == '2021':
official_anns = mmengine.load(
osp.join(ann_dir, mode, 'instances.json'))
VIS['categories'] = copy.deepcopy(official_anns['categories'])
has_annotations = mode == 'train'
if has_annotations:
vid_to_anns = defaultdict(list)
for ann_info in official_anns['annotations']:
vid_to_anns[ann_info['video_id']].append(ann_info)
video_infos = official_anns['videos']
for video_info in tqdm(video_infos):
video_name = video_info['file_names'][0].split(os.sep)[0]
video = dict(
id=video_info['id'],
name=video_name,
width=video_info['width'],
height=video_info['height'])
VIS['videos'].append(video)
num_frames = len(video_info['file_names'])
width = video_info['width']
height = video_info['height']
if has_annotations:
ann_infos_in_video = vid_to_anns[video_info['id']]
instance_id_maps = dict()
for frame_id in range(num_frames):
image = dict(
file_name=video_info['file_names'][frame_id],
height=height,
width=width,
id=records['img_id'],
frame_id=frame_id,
video_id=video_info['id'])
VIS['images'].append(image)
if has_annotations:
for ann_info in ann_infos_in_video:
bbox = ann_info['bboxes'][frame_id]
if bbox is None:
continue
category_id = ann_info['category_id']
track_id = ann_info['id']
segmentation = ann_info['segmentations'][frame_id]
area = ann_info['areas'][frame_id]
assert isinstance(category_id, int)
assert isinstance(track_id, int)
assert segmentation is not None
assert area is not None
if track_id in instance_id_maps:
instance_id = instance_id_maps[track_id]
else:
instance_id = records['global_instance_id']
records['global_instance_id'] += 1
instance_id_maps[track_id] = instance_id
ann = dict(
id=records['ann_id'],
video_id=video_info['id'],
image_id=records['img_id'],
category_id=category_id,
instance_id=instance_id,
bbox=bbox,
segmentation=segmentation,
area=area,
iscrowd=ann_info['iscrowd'])
if category_id not in obj_num_classes:
obj_num_classes[category_id] = 1
else:
obj_num_classes[category_id] += 1
VIS['annotations'].append(ann)
records['ann_id'] += 1
records['img_id'] += 1
records['vid_id'] += 1
if not osp.isdir(save_dir):
os.makedirs(save_dir)
mmengine.dump(
VIS, osp.join(save_dir, f'youtube_vis_{dataset_version}_{mode}.json'))
print(f'-----YouTube VIS {dataset_version} {mode}------')
print(f'{records["vid_id"]- 1} videos')
print(f'{records["img_id"]- 1} images')
if has_annotations:
print(f'{records["ann_id"] - 1} objects')
print(f'{records["global_instance_id"] - 1} instances')
print('-----------------------')
if has_annotations:
for i in range(1, len(VIS['categories']) + 1):
class_name = VIS['categories'][i - 1]['name']
print(f'Class {i} {class_name} has {obj_num_classes[i]} objects.')
def main():
args = parse_args()
for sub_set in ['train', 'valid', 'test']:
convert_vis(args.input, args.output, args.version, sub_set)
if __name__ == '__main__':
main()
|