sapiens-pose / external /engine /mmengine /hooks /param_scheduler_hook.py
rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
5.06 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Optional, Union
from mmengine.optim import _ParamScheduler
from mmengine.registry import HOOKS
from mmengine.utils import is_list_of
from .hook import Hook
DATA_BATCH = Optional[Union[dict, tuple, list]]
@HOOKS.register_module()
class ParamSchedulerHook(Hook):
"""A hook to update some hyper-parameters in optimizer, e.g., learning rate
and momentum."""
priority = 'LOW'
def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[dict] = None) -> None:
"""Call step function for each scheduler after each training iteration.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (dict or tuple or list, optional): Data from dataloader.
In order to keep this interface consistent with other hooks,
we keep ``data_batch`` here.
outputs (dict, optional): Outputs from model.
In order to keep this interface consistent with other hooks, we
keep ``data_batch`` here.
"""
if runner.param_schedulers is None:
return
def step(param_schedulers):
assert isinstance(param_schedulers, list)
for scheduler in param_schedulers:
if not scheduler.by_epoch:
scheduler.step()
if isinstance(runner.param_schedulers, list):
step(runner.param_schedulers)
elif isinstance(runner.param_schedulers, dict):
for param_schedulers in runner.param_schedulers.values():
step(param_schedulers)
else:
raise TypeError(
'runner.param_schedulers should be list of ParamScheduler or '
'a dict containing list of ParamScheduler, '
f'but got {runner.param_schedulers}')
def after_train_epoch(self, runner) -> None:
"""Call step function for each scheduler after each training epoch.
Args:
runner (Runner): The runner of the training process.
"""
if runner.param_schedulers is None:
return
def step(param_schedulers):
assert isinstance(param_schedulers, list)
for scheduler in param_schedulers:
if scheduler.by_epoch:
scheduler.step()
if isinstance(runner.param_schedulers, list):
step(runner.param_schedulers)
elif isinstance(runner.param_schedulers, dict):
for param_schedulers in runner.param_schedulers.values():
step(param_schedulers)
else:
raise TypeError(
'runner.param_schedulers should be list of ParamScheduler or '
'a dict containing list of ParamScheduler, '
f'but got {runner.param_schedulers}')
def after_val_epoch(self,
runner,
metrics: Optional[Dict[str, float]] = None) -> None:
"""Call step function for each scheduler which has attribute
``need_val_args`` after each validation epoch.
Args:
runner (Runner): The runner of the validation process.
metrics (Dict[str, float], optional): Evaluation results of all
metrics on validation dataset. The keys are the names of the
metrics, and the values are corresponding results.
Note:
if ``runner.param_schedulers`` is not built before,
the hook ``after_val_epoch`` will be skipped.
"""
if runner.param_schedulers is None:
return
# avoid counting scheduler._global_step
# it has counted in after_train_* hook
if metrics is None:
return
def step(param_schedulers):
# check param_schedulers is list and built
if not is_list_of(param_schedulers, _ParamScheduler):
return
for scheduler in param_schedulers:
if (scheduler.by_epoch
and getattr(scheduler, 'need_val_args', False)):
scheduler.step(metrics)
if isinstance(runner.param_schedulers, list):
step(runner.param_schedulers)
elif isinstance(runner.param_schedulers, dict):
for param_schedulers in runner.param_schedulers.values():
step(param_schedulers)
else:
raise TypeError(
'runner.param_schedulers should be list of ParamScheduler or '
'a dict containing list of ParamScheduler, '
f'but got {runner.param_schedulers}')