Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""This file holding some environment constant for sharing by other files.""" | |
import os.path as osp | |
import subprocess | |
import sys | |
from collections import OrderedDict, defaultdict | |
import cv2 | |
import numpy as np | |
import torch | |
import mmengine | |
from .parrots_wrapper import TORCH_VERSION, get_build_config, is_rocm_pytorch | |
def _get_cuda_home(): | |
if TORCH_VERSION == 'parrots': | |
from parrots.utils.build_extension import CUDA_HOME | |
else: | |
if is_rocm_pytorch(): | |
from torch.utils.cpp_extension import ROCM_HOME | |
CUDA_HOME = ROCM_HOME | |
else: | |
from torch.utils.cpp_extension import CUDA_HOME | |
return CUDA_HOME | |
def collect_env(): | |
"""Collect the information of the running environments. | |
Returns: | |
dict: The environment information. The following fields are contained. | |
- sys.platform: The variable of ``sys.platform``. | |
- Python: Python version. | |
- CUDA available: Bool, indicating if CUDA is available. | |
- GPU devices: Device type of each GPU. | |
- CUDA_HOME (optional): The env var ``CUDA_HOME``. | |
- NVCC (optional): NVCC version. | |
- GCC: GCC version, "n/a" if GCC is not installed. | |
- MSVC: Microsoft Virtual C++ Compiler version, Windows only. | |
- PyTorch: PyTorch version. | |
- PyTorch compiling details: The output of \ | |
``torch.__config__.show()``. | |
- TorchVision (optional): TorchVision version. | |
- OpenCV (optional): OpenCV version. | |
- MMENGINE: MMENGINE version. | |
""" | |
from distutils import errors | |
env_info = OrderedDict() | |
env_info['sys.platform'] = sys.platform | |
env_info['Python'] = sys.version.replace('\n', '') | |
cuda_available = torch.cuda.is_available() | |
env_info['CUDA available'] = cuda_available | |
env_info['numpy_random_seed'] = np.random.get_state()[1][0] | |
if cuda_available: | |
devices = defaultdict(list) | |
for k in range(torch.cuda.device_count()): | |
devices[torch.cuda.get_device_name(k)].append(str(k)) | |
for name, device_ids in devices.items(): | |
env_info['GPU ' + ','.join(device_ids)] = name | |
CUDA_HOME = _get_cuda_home() | |
env_info['CUDA_HOME'] = CUDA_HOME | |
if CUDA_HOME is not None and osp.isdir(CUDA_HOME): | |
if CUDA_HOME == '/opt/rocm': | |
try: | |
nvcc = osp.join(CUDA_HOME, 'hip/bin/hipcc') | |
nvcc = subprocess.check_output( | |
f'"{nvcc}" --version', shell=True) | |
nvcc = nvcc.decode('utf-8').strip() | |
release = nvcc.rfind('HIP version:') | |
build = nvcc.rfind('') | |
nvcc = nvcc[release:build].strip() | |
except subprocess.SubprocessError: | |
nvcc = 'Not Available' | |
else: | |
try: | |
nvcc = osp.join(CUDA_HOME, 'bin/nvcc') | |
nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True) | |
nvcc = nvcc.decode('utf-8').strip() | |
release = nvcc.rfind('Cuda compilation tools') | |
build = nvcc.rfind('Build ') | |
nvcc = nvcc[release:build].strip() | |
except subprocess.SubprocessError: | |
nvcc = 'Not Available' | |
env_info['NVCC'] = nvcc | |
try: | |
# Check C++ Compiler. | |
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...', | |
# indicating the compiler used, we use this to get the compiler name | |
import io | |
import sysconfig | |
cc = sysconfig.get_config_var('CC') | |
if cc: | |
cc = osp.basename(cc.split()[0]) | |
cc_info = subprocess.check_output(f'{cc} --version', shell=True) | |
env_info['GCC'] = cc_info.decode('utf-8').partition( | |
'\n')[0].strip() | |
else: | |
# on Windows, cl.exe is not in PATH. We need to find the path. | |
# distutils.ccompiler.new_compiler() returns a msvccompiler | |
# object and after initialization, path to cl.exe is found. | |
import locale | |
import os | |
from distutils.ccompiler import new_compiler | |
ccompiler = new_compiler() | |
ccompiler.initialize() | |
cc = subprocess.check_output( | |
f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True) | |
encoding = os.device_encoding( | |
sys.stdout.fileno()) or locale.getpreferredencoding() | |
env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip() | |
env_info['GCC'] = 'n/a' | |
except (subprocess.CalledProcessError, errors.DistutilsPlatformError): | |
env_info['GCC'] = 'n/a' | |
except io.UnsupportedOperation as e: | |
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr | |
# Refer to: https://github.com/open-mmlab/mmengine/issues/931 | |
# TODO: find a solution to get compiler info in Windows JupyterLab, | |
# while preserving backward-compatibility in other systems. | |
env_info['MSVC'] = f'n/a, reason: {str(e)}' | |
env_info['PyTorch'] = torch.__version__ | |
env_info['PyTorch compiling details'] = get_build_config() | |
try: | |
import torchvision | |
env_info['TorchVision'] = torchvision.__version__ | |
except ModuleNotFoundError: | |
pass | |
env_info['OpenCV'] = cv2.__version__ | |
env_info['MMEngine'] = mmengine.__version__ | |
return env_info | |