Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from unittest.mock import patch | |
import torch | |
import torch.nn as nn | |
from mmengine.model import BaseModel | |
from mmengine.registry import MODELS | |
class ToyModel(BaseModel): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
self.conv = nn.Conv2d(1, 1, 1) | |
def forward(self, *args, **kwargs): | |
return {'loss': torch.tensor(0.0)} | |
def update_params_step(self, loss): | |
pass | |
def runtimeinfo_step(self, runner, batch_idx, data_batch=None): | |
runner.message_hub.update_info('iter', runner.iter) | |
lr_dict = runner.optim_wrapper.get_lr() | |
for name, lr in lr_dict.items(): | |
runner.message_hub.update_scalar(f'train/{name}', lr[0]) | |
momentum_dict = runner.optim_wrapper.get_momentum() | |
for name, momentum in momentum_dict.items(): | |
runner.message_hub.update_scalar(f'train/{name}', momentum[0]) | |
def fake_run(cfg): | |
from mmengine.runner import Runner | |
cfg.pop('model') | |
cfg.pop('visualizer') | |
cfg.pop('val_dataloader') | |
cfg.pop('val_evaluator') | |
cfg.pop('val_cfg') | |
cfg.pop('test_dataloader') | |
cfg.pop('test_evaluator') | |
cfg.pop('test_cfg') | |
extra_cfg = dict( | |
model=dict(type='ToyModel'), | |
visualizer=dict( | |
type='Visualizer', | |
vis_backends=[ | |
dict(type='TensorboardVisBackend', save_dir='temp_dir') | |
]), | |
) | |
cfg.merge_from_dict(extra_cfg) | |
# build the runner from config | |
runner = Runner.from_cfg(cfg) | |
# start training | |
runner.train() | |