sapiens-pose / external /det /tools /misc /download_dataset.py
rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tarfile
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from tarfile import TarFile
from zipfile import ZipFile
import torch
from mmengine.utils.path import mkdir_or_exist
def parse_args():
parser = argparse.ArgumentParser(
description='Download datasets for training')
parser.add_argument(
'--dataset-name', type=str, help='dataset name', default='coco2017')
parser.add_argument(
'--save-dir',
type=str,
help='the dir to save dataset',
default='data/coco')
parser.add_argument(
'--unzip',
action='store_true',
help='whether unzip dataset or not, zipped files will be saved')
parser.add_argument(
'--delete',
action='store_true',
help='delete the download zipped files')
parser.add_argument(
'--threads', type=int, help='number of threading', default=4)
args = parser.parse_args()
return args
def download(url, dir, unzip=True, delete=False, threads=1):
def download_one(url, dir):
f = dir / Path(url).name
if Path(url).is_file():
Path(url).rename(f)
elif not f.exists():
print(f'Downloading {url} to {f}')
torch.hub.download_url_to_file(url, f, progress=True)
if unzip and f.suffix in ('.zip', '.tar'):
print(f'Unzipping {f.name}')
if f.suffix == '.zip':
ZipFile(f).extractall(path=dir)
elif f.suffix == '.tar':
TarFile(f).extractall(path=dir)
if delete:
f.unlink()
print(f'Delete {f}')
dir = Path(dir)
if threads > 1:
pool = ThreadPool(threads)
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))
pool.close()
pool.join()
else:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
def download_objects365v2(url, dir, unzip=True, delete=False, threads=1):
def download_single(url, dir):
if 'train' in url:
saving_dir = dir / Path('train_zip')
mkdir_or_exist(saving_dir)
f = saving_dir / Path(url).name
unzip_dir = dir / Path('train')
mkdir_or_exist(unzip_dir)
elif 'val' in url:
saving_dir = dir / Path('val')
mkdir_or_exist(saving_dir)
f = saving_dir / Path(url).name
unzip_dir = dir / Path('val')
mkdir_or_exist(unzip_dir)
else:
raise NotImplementedError
if Path(url).is_file():
Path(url).rename(f)
elif not f.exists():
print(f'Downloading {url} to {f}')
torch.hub.download_url_to_file(url, f, progress=True)
if unzip and str(f).endswith('.tar.gz'):
print(f'Unzipping {f.name}')
tar = tarfile.open(f)
tar.extractall(path=unzip_dir)
if delete:
f.unlink()
print(f'Delete {f}')
# process annotations
full_url = []
for _url in url:
if 'zhiyuan_objv2_train.tar.gz' in _url or \
'zhiyuan_objv2_val.json' in _url:
full_url.append(_url)
elif 'train' in _url:
for i in range(51):
full_url.append(f'{_url}patch{i}.tar.gz')
elif 'val/images/v1' in _url:
for i in range(16):
full_url.append(f'{_url}patch{i}.tar.gz')
elif 'val/images/v2' in _url:
for i in range(16, 44):
full_url.append(f'{_url}patch{i}.tar.gz')
else:
raise NotImplementedError
dir = Path(dir)
if threads > 1:
pool = ThreadPool(threads)
pool.imap(lambda x: download_single(*x), zip(full_url, repeat(dir)))
pool.close()
pool.join()
else:
for u in full_url:
download_single(u, dir)
def main():
args = parse_args()
path = Path(args.save_dir)
if not path.exists():
path.mkdir(parents=True, exist_ok=True)
data2url = dict(
# TODO: Support for downloading Panoptic Segmentation of COCO
coco2017=[
'http://images.cocodataset.org/zips/train2017.zip',
'http://images.cocodataset.org/zips/val2017.zip',
'http://images.cocodataset.org/zips/test2017.zip',
'http://images.cocodataset.org/zips/unlabeled2017.zip',
'http://images.cocodataset.org/annotations/annotations_trainval2017.zip', # noqa
'http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip', # noqa
'http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip', # noqa
'http://images.cocodataset.org/annotations/image_info_test2017.zip', # noqa
'http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip', # noqa
],
coco2014=[
'http://images.cocodataset.org/zips/train2014.zip',
'http://images.cocodataset.org/zips/val2014.zip',
'http://images.cocodataset.org/zips/test2014.zip',
'http://images.cocodataset.org/annotations/annotations_trainval2014.zip', # noqa
'http://images.cocodataset.org/annotations/image_info_test2014.zip' # noqa
],
lvis=[
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa
],
voc2007=[
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', # noqa
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar', # noqa
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar', # noqa
],
voc2012=[
'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar', # noqa
],
balloon=[
# src link: https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip # noqa
'https://download.openmmlab.com/mmyolo/data/balloon_dataset.zip'
],
# Note: There is no download link for Objects365-V1 right now. If you
# would like to download Objects365-V1, please visit
# http://www.objects365.org/ to concat the author.
objects365v2=[
# training annotations
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/zhiyuan_objv2_train.tar.gz', # noqa
# validation annotations
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/zhiyuan_objv2_val.json', # noqa
# training url root
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/', # noqa
# validation url root_1
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v1/', # noqa
# validation url root_2
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v2/' # noqa
],
ade20k_2016=[
# training images and semantic segmentation annotations
'http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip', # noqa
# instance segmentation annotations
'http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar', # noqa
# img categories ids
'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/imgCatIds.json', # noqa
# category mapping
'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/categoryMapping.txt' # noqa
],
refcoco=[
# images
'http://images.cocodataset.org/zips/train2014.zip',
# refcoco annotations
'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip',
# refcoco+ annotations
'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip',
# refcocog annotations
'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip'
])
url = data2url.get(args.dataset_name, None)
if url is None:
print('Only support ADE20K, COCO, RefCOCO, VOC, LVIS, '
'balloon, and Objects365v2 now!')
return
if args.dataset_name == 'objects365v2':
download_objects365v2(
url,
dir=path,
unzip=args.unzip,
delete=args.delete,
threads=args.threads)
else:
download(
url,
dir=path,
unzip=args.unzip,
delete=args.delete,
threads=args.threads)
if __name__ == '__main__':
main()