# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime import functools import os import subprocess from typing import Callable, Optional, Tuple, Union import numpy as np import torch import torch.multiprocessing as mp from torch import Tensor from torch import distributed as torch_dist from torch.distributed import ProcessGroup from mmengine.device import is_mlu_available, is_npu_available from collections.abc import Iterable, Mapping _LOCAL_PROCESS_GROUP = None def is_distributed() -> bool: """Return True if distributed environment has been initialized.""" return torch_dist.is_available() and torch_dist.is_initialized() def get_local_group() -> Optional[ProcessGroup]: """Return local process group.""" if not is_distributed(): return None if _LOCAL_PROCESS_GROUP is None: raise RuntimeError('Local process group is not created, please use ' '`init_local_group` to setup local process group.') return _LOCAL_PROCESS_GROUP def get_default_group() -> Optional[ProcessGroup]: """Return default process group.""" return torch_dist.distributed_c10d._get_default_group() def infer_launcher(): if 'WORLD_SIZE' in os.environ: return 'pytorch' elif 'SLURM_NTASKS' in os.environ: return 'slurm' elif 'OMPI_COMM_WORLD_LOCAL_RANK' in os.environ: return 'mpi' else: return 'none' def init_dist(launcher, backend='nccl', init_backend='torch', **kwargs) -> None: """Initialize distributed environment. Args: launcher (str): Way to launcher multi processes. Supported launchers are 'pytorch', 'mpi' and 'slurm'. backend (str): Communication Backends. Supported backends are 'nccl', 'gloo' and 'mpi'. Defaults to 'nccl'. **kwargs: keyword arguments are passed to ``init_process_group``. """ timeout = kwargs.get('timeout', None) if timeout is not None: # If a timeout (in seconds) is specified, it must be converted # to a timedelta object before forwarding the call to # the respective backend, because they expect a timedelta object. try: kwargs['timeout'] = datetime.timedelta(seconds=timeout) except TypeError as exception: raise TypeError( f'Timeout for distributed training must be provided as ' f"timeout in seconds, but we've received the type " f'{type(timeout)}. Please specify the timeout like this: ' f"dist_cfg=dict(backend='nccl', timeout=1800)") from exception if mp.get_start_method(allow_none=True) is None: mp.set_start_method('spawn') if launcher == 'pytorch': _init_dist_pytorch(backend, init_backend=init_backend, **kwargs) elif launcher == 'mpi': _init_dist_mpi(backend, **kwargs) elif launcher == 'slurm': _init_dist_slurm(backend, init_backend=init_backend, **kwargs) else: raise ValueError(f'Invalid launcher type: {launcher}') def _init_dist_pytorch(backend, init_backend='torch', **kwargs) -> None: """Initialize distributed environment with PyTorch launcher. Args: backend (str): Backend of torch.distributed. Supported backends are 'nccl', 'gloo' and 'mpi'. Defaults to 'nccl'. **kwargs: keyword arguments are passed to ``init_process_group``. """ rank = int(os.environ['RANK']) if is_mlu_available(): import torch_mlu # noqa: F401 local_rank = int(os.environ['LOCAL_RANK']) torch.mlu.set_device(local_rank) torch_dist.init_process_group( backend='cncl', rank=rank, world_size=int(os.environ['WORLD_SIZE']), **kwargs) elif is_npu_available(): import torch_npu # noqa: F401 torch.npu.set_device(rank) torch_dist.init_process_group( backend='hccl', rank=rank, world_size=int(os.environ['WORLD_SIZE']), **kwargs) else: # LOCAL_RANK is set by `torch.distributed.launch` since PyTorch 1.1 local_rank = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) if init_backend == 'torch': torch_dist.init_process_group(backend=backend, **kwargs) elif init_backend == 'deepspeed': import deepspeed deepspeed.init_distributed(dist_backend=backend, **kwargs) elif init_backend == 'colossalai': import colossalai colossalai.launch_from_torch(backend=backend, **kwargs) else: raise ValueError( 'supported "init_backend" is "torch" or "deepspeed", ' f'but got {init_backend}') def _init_dist_mpi(backend, **kwargs) -> None: """Initialize distributed environment with MPI launcher. Args: backend (str): Backend of torch.distributed. Supported backends are 'nccl', 'gloo' and 'mpi'. Defaults to 'nccl'. **kwargs: keyword arguments are passed to ``init_process_group``. """ if backend == 'smddp': try: import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 except ModuleNotFoundError as e: raise ModuleNotFoundError( 'Please use an Amazon SageMaker DLC to access smdistributed: ' 'https://github.com/aws/deep-learning-containers/blob/master' '/available_images.md#sagemaker-framework-containers' '-sm-support-only') from e local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) torch.cuda.set_device(local_rank) if 'MASTER_PORT' not in os.environ: # 29500 is torch.distributed default port os.environ['MASTER_PORT'] = '29500' if 'MASTER_ADDR' not in os.environ: raise KeyError('The environment variable MASTER_ADDR is not set') os.environ['WORLD_SIZE'] = os.environ['OMPI_COMM_WORLD_SIZE'] os.environ['RANK'] = os.environ['OMPI_COMM_WORLD_RANK'] torch_dist.init_process_group(backend=backend, **kwargs) def _init_dist_slurm(backend, port=None, init_backend='torch', **kwargs) -> None: """Initialize slurm distributed training environment. If argument ``port`` is not specified, then the master port will be system environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system environment variable, then a default port ``29500`` will be used. Args: backend (str): Backend of torch.distributed. port (int, optional): Master port. Defaults to None. """ proc_id = int(os.environ['SLURM_PROCID']) ntasks = int(os.environ['SLURM_NTASKS']) node_list = os.environ['SLURM_NODELIST'] # Not sure when this environment variable could be None, so use a fallback local_rank_env = os.environ.get('SLURM_LOCALID', None) if local_rank_env is not None: local_rank = int(local_rank_env) else: num_gpus = torch.cuda.device_count() local_rank = proc_id % num_gpus torch.cuda.set_device(local_rank) addr = subprocess.getoutput( f'scontrol show hostname {node_list} | head -n1') # specify master port if port is not None: os.environ['MASTER_PORT'] = str(port) elif 'MASTER_PORT' in os.environ: pass # use MASTER_PORT in the environment variable else: # 29500 is torch.distributed default port os.environ['MASTER_PORT'] = '29500' # use MASTER_ADDR in the environment variable if it already exists if 'MASTER_ADDR' not in os.environ: os.environ['MASTER_ADDR'] = addr os.environ['WORLD_SIZE'] = str(ntasks) os.environ['LOCAL_RANK'] = str(local_rank) os.environ['RANK'] = str(proc_id) if init_backend == 'torch': torch_dist.init_process_group(backend=backend, **kwargs) elif init_backend == 'deepspeed': import deepspeed deepspeed.init_distributed(dist_backend=backend, **kwargs) elif init_backend == 'colossalai': import colossalai colossalai.launch_from_slurm( backend=backend, host=os.environ['MASTER_ADDR'], port=os.environ['MASTER_PORT'], **kwargs, ) else: raise ValueError('supported "init_backend" is "torch" or "deepspeed", ' f'but got {init_backend}') def init_local_group(node_rank: int, num_gpus_per_node: int): """Setup the local process group. Setup a process group which only includes processes that on the same machine as the current process. The code is modified from https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/launch.py Args: node_rank (int): Rank of machines used for training. num_gpus_per_node (int): Number of gpus used for training in a single machine. """ # noqa: W501 global _LOCAL_PROCESS_GROUP assert _LOCAL_PROCESS_GROUP is None ranks = list( range(node_rank * num_gpus_per_node, (node_rank + 1) * num_gpus_per_node)) _LOCAL_PROCESS_GROUP = torch_dist.new_group(ranks) def get_backend(group: Optional[ProcessGroup] = None) -> Optional[str]: """Return the backend of the given process group. Note: Calling ``get_backend`` in non-distributed environment will return None. Args: group (ProcessGroup, optional): The process group to work on. The default is the general main process group. If another specific group is specified, the calling process must be part of :attr:`group`. Defaults to None. Returns: str or None: Return the backend of the given process group as a lower case string if in distributed environment, otherwise None. """ if is_distributed(): # handle low versions of torch like 1.5.0 which does not support # passing in None for group argument if group is None: group = get_default_group() return torch_dist.get_backend(group) else: return None def get_world_size(group: Optional[ProcessGroup] = None) -> int: """Return the number of the given process group. Note: Calling ``get_world_size`` in non-distributed environment will return 1. Args: group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. Defaults to None. Returns: int: Return the number of processes of the given process group if in distributed environment, otherwise 1. """ if is_distributed(): # handle low versions of torch like 1.5.0 which does not support # passing in None for group argument if group is None: group = get_default_group() return torch_dist.get_world_size(group) else: return 1 def get_rank(group: Optional[ProcessGroup] = None) -> int: """Return the rank of the given process group. Rank is a unique identifier assigned to each process within a distributed process group. They are always consecutive integers ranging from 0 to ``world_size``. Note: Calling ``get_rank`` in non-distributed environment will return 0. Args: group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. Defaults to None. Returns: int: Return the rank of the process group if in distributed environment, otherwise 0. """ if is_distributed(): # handle low versions of torch like 1.5.0 which does not support # passing in None for group argument if group is None: group = get_default_group() return torch_dist.get_rank(group) else: return 0 def get_local_size() -> int: """Return the number of the current node. Returns: int: Return the number of processes in the current node if in distributed environment, otherwise 1. """ if not is_distributed(): return 1 if _LOCAL_PROCESS_GROUP is None: raise RuntimeError('Local process group is not created, please use ' '`init_local_group` to setup local process group.') return torch_dist.get_world_size(_LOCAL_PROCESS_GROUP) def get_local_rank() -> int: """Return the rank of current process in the current node. Returns: int: Return the rank of current process in the current node if in distributed environment, otherwise 0 """ if not is_distributed(): return 0 if _LOCAL_PROCESS_GROUP is None: raise RuntimeError('Local process group is not created, please use ' '`init_local_group` to setup local process group.') return torch_dist.get_rank(_LOCAL_PROCESS_GROUP) def get_dist_info(group: Optional[ProcessGroup] = None) -> Tuple[int, int]: """Get distributed information of the given process group. Note: Calling ``get_dist_info`` in non-distributed environment will return (0, 1). Args: group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. Defaults to None. Returns: tuple[int, int]: Return a tuple containing the ``rank`` and ``world_size``. """ world_size = get_world_size(group) rank = get_rank(group) return rank, world_size def is_main_process(group: Optional[ProcessGroup] = None) -> bool: """Whether the current rank of the given process group is equal to 0. Args: group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. Defaults to None. Returns: bool: Return True if the current rank of the given process group is equal to 0, otherwise False. """ return get_rank(group) == 0 def master_only(func: Callable) -> Callable: """Decorate those methods which should be executed in master process. Args: func (callable): Function to be decorated. Returns: callable: Return decorated function. """ @functools.wraps(func) def wrapper(*args, **kwargs): if is_main_process(): return func(*args, **kwargs) return wrapper def barrier(group: Optional[ProcessGroup] = None) -> None: """Synchronize all processes from the given process group. This collective blocks processes until the whole group enters this function. Note: Calling ``barrier`` in non-distributed environment will do nothing. Args: group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. Defaults to None. """ if is_distributed(): # handle low versions of torch like 1.5.0 which does not support # passing in None for group argument if group is None: group = get_default_group() torch_dist.barrier(group) def get_data_device(data: Union[Tensor, Mapping, Iterable]) -> torch.device: """Return the device of ``data``. If ``data`` is a sequence of Tensor, all items in ``data`` should have a same device type. If ``data`` is a dict whose values are Tensor, all values should have a same device type. Args: data (Tensor or Sequence or dict): Inputs to be inferred the device. Returns: torch.device: The device of ``data``. Examples: >>> import torch >>> from mmengine.dist import cast_data_device >>> # data is a Tensor >>> data = torch.tensor([0, 1]) >>> get_data_device(data) device(type='cpu') >>> # data is a list of Tensor >>> data = [torch.tensor([0, 1]), torch.tensor([2, 3])] >>> get_data_device(data) device(type='cpu') >>> # data is a dict >>> data = {'key1': torch.tensor([0, 1]), 'key2': torch.tensor([0, 1])} >>> get_data_device(data) device(type='cpu') """ if isinstance(data, Tensor): return data.device elif isinstance(data, Mapping): pre = None for v in data.values(): cur = get_data_device(v) if pre is None: pre = cur else: if cur != pre: raise ValueError( 'device type in data should be consistent, but got ' f'{cur} and {pre}') if pre is None: raise ValueError('data should not be empty.') return pre elif isinstance(data, Iterable) and not isinstance(data, str): pre = None for item in data: cur = get_data_device(item) if pre is None: pre = cur else: if cur != pre: raise ValueError( 'device type in data should be consistent, but got ' f'{cur} and {pre}') if pre is None: raise ValueError('data should not be empty.') return pre else: raise TypeError('data should be a Tensor, sequence of tensor or dict, ' f'but got {data}') def get_comm_device(group: Optional[ProcessGroup] = None) -> torch.device: """Return the device for communication among groups. Args: group (ProcessGroup, optional): The process group to work on. Returns: torch.device: The device of backend. """ backend = get_backend(group) if backend == 'hccl': import torch_npu # noqa: F401 return torch.device('npu', torch.npu.current_device()) elif backend == torch_dist.Backend.NCCL: return torch.device('cuda', torch.cuda.current_device()) elif backend == 'cncl': import torch_mlu # noqa: F401 return torch.device('mlu', torch.mlu.current_device()) elif backend == 'smddp': return torch.device('cuda', torch.cuda.current_device()) else: # GLOO and MPI backends use cpu device by default return torch.device('cpu') def cast_data_device( data: Union[Tensor, Mapping, Iterable], device: torch.device, out: Optional[Union[Tensor, Mapping, Iterable]] = None ) -> Union[Tensor, Mapping, Iterable]: """Recursively convert Tensor in ``data`` to ``device``. If ``data`` has already on the ``device``, it will not be casted again. Args: data (Tensor or list or dict): Inputs to be casted. device (torch.device): Destination device type. out (Tensor or list or dict, optional): If ``out`` is specified, its value will be equal to ``data``. Defaults to None. Returns: Tensor or list or dict: ``data`` was casted to ``device``. """ if out is not None: if type(data) != type(out): raise TypeError( 'out should be the same type with data, but got data is ' f'{type(data)} and out is {type(data)}') if isinstance(out, set): raise TypeError('out should not be a set') if isinstance(data, Tensor): if get_data_device(data) == device: data_on_device = data else: data_on_device = data.to(device) if out is not None: # modify the value of out inplace out.copy_(data_on_device) # type: ignore return data_on_device elif isinstance(data, Mapping): data_on_device = {} if out is not None: data_len = len(data) out_len = len(out) # type: ignore if data_len != out_len: raise ValueError('length of data and out should be same, ' f'but got {data_len} and {out_len}') for k, v in data.items(): data_on_device[k] = cast_data_device(v, device, out[k]) # type: ignore else: for k, v in data.items(): data_on_device[k] = cast_data_device(v, device) if len(data_on_device) == 0: raise ValueError('data should not be empty') # To ensure the type of output as same as input, we use `type(data)` # to wrap the output return type(data)(data_on_device) # type: ignore elif isinstance(data, Iterable) and not isinstance( data, str) and not isinstance(data, np.ndarray): data_on_device = [] if out is not None: for v1, v2 in zip(data, out): data_on_device.append(cast_data_device(v1, device, v2)) else: for v in data: data_on_device.append(cast_data_device(v, device)) if len(data_on_device) == 0: raise ValueError('data should not be empty') return type(data)(data_on_device) # type: ignore else: raise TypeError('data should be a Tensor, list of tensor or dict, ' f'but got {data}')