# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import base64 import os import mmcv import numpy as np import torch from ts.torch_handler.base_handler import BaseHandler from mmdet.apis import inference_detector, init_detector class MMdetHandler(BaseHandler): threshold = 0.5 def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') self.model = init_detector(self.config_file, checkpoint, self.device) self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = inference_detector(self.model, data) return results def postprocess(self, data): # Format output following the example ObjectDetectionHandler format output = [] for data_sample in data: pred_instances = data_sample.pred_instances bboxes = pred_instances.bboxes.cpu().numpy().astype( np.float32).tolist() labels = pred_instances.labels.cpu().numpy().astype( np.int32).tolist() scores = pred_instances.scores.cpu().numpy().astype( np.float32).tolist() preds = [] for idx in range(len(labels)): cls_score, bbox, cls_label = scores[idx], bboxes[idx], labels[ idx] if cls_score >= self.threshold: class_name = self.model.dataset_meta['classes'][cls_label] result = dict( class_label=cls_label, class_name=class_name, bbox=bbox, score=cls_score) preds.append(result) output.append(preds) return output