Spaces:
Running
on
T4
Running
on
T4
cleanup
Browse files- app.py +0 -215
- assets/sample_input.mp3 +0 -3
- assets/sample_input_2.mp3 +0 -3
- lang_list.py +0 -254
- m4t_app.py +0 -463
- models/vad_s2st_sc_24khz_main.yaml +0 -24
- requirements.txt +0 -26
- sample_wav.py +0 -0
- simuleval_transcoder.py +0 -425
- style.css +0 -16
app.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
import asyncio
|
7 |
-
from simuleval_transcoder import SimulevalTranscoder, logger
|
8 |
-
|
9 |
-
import time
|
10 |
-
from simuleval.utils.agent import build_system_from_dir
|
11 |
-
import torch
|
12 |
-
|
13 |
-
|
14 |
-
language_code_to_name = {
|
15 |
-
"cmn": "Mandarin Chinese",
|
16 |
-
"deu": "German",
|
17 |
-
"eng": "English",
|
18 |
-
"fra": "French",
|
19 |
-
"spa": "Spanish",
|
20 |
-
}
|
21 |
-
S2ST_TARGET_LANGUAGE_NAMES = language_code_to_name.values()
|
22 |
-
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
23 |
-
|
24 |
-
DEFAULT_TARGET_LANGUAGE = "English"
|
25 |
-
|
26 |
-
|
27 |
-
def build_agent(model_path, config_name=None):
|
28 |
-
agent = build_system_from_dir(
|
29 |
-
model_path, config_name=config_name,
|
30 |
-
)
|
31 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
-
agent.to(device, fp16=True)
|
33 |
-
|
34 |
-
return agent
|
35 |
-
|
36 |
-
agent = build_agent("models", "vad_s2st_sc_24khz_main.yaml")
|
37 |
-
transcoder = SimulevalTranscoder(
|
38 |
-
agent,
|
39 |
-
sample_rate=48_000,
|
40 |
-
debug=False,
|
41 |
-
buffer_limit=1,
|
42 |
-
)
|
43 |
-
|
44 |
-
def start_recording():
|
45 |
-
logger.debug(f"start_recording: starting transcoder")
|
46 |
-
transcoder.reset_states()
|
47 |
-
transcoder.close = False
|
48 |
-
transcoder.start()
|
49 |
-
|
50 |
-
def stop_recording():
|
51 |
-
transcoder.close = True
|
52 |
-
|
53 |
-
class MyState:
|
54 |
-
def __init__(self):
|
55 |
-
self.queue = asyncio.Queue()
|
56 |
-
self.close = False
|
57 |
-
|
58 |
-
|
59 |
-
s = MyState()
|
60 |
-
|
61 |
-
def process_incoming_bytes(audio):
|
62 |
-
logger.debug(f"process_bytes: incoming audio")
|
63 |
-
sample_rate, data = audio
|
64 |
-
transcoder.process_incoming_bytes(data.tobytes(), 'eng', sample_rate)
|
65 |
-
s.queue.put_nowait(audio)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
def get_buffered_output():
|
70 |
-
|
71 |
-
speech_and_text_output = transcoder.get_buffered_output()
|
72 |
-
if speech_and_text_output is None:
|
73 |
-
logger.debug("No output from transcoder.get_buffered_output()")
|
74 |
-
return None, None, None
|
75 |
-
|
76 |
-
logger.debug(f"We DID get output from the transcoder!")
|
77 |
-
|
78 |
-
text = None
|
79 |
-
speech = None
|
80 |
-
|
81 |
-
if speech_and_text_output.speech_samples:
|
82 |
-
speech = (speech_and_text_output.speech_sample_rate, speech_and_text_output.speech_samples)
|
83 |
-
|
84 |
-
if speech_and_text_output.text:
|
85 |
-
text = speech_and_text_output.text
|
86 |
-
if speech_and_text_output.final:
|
87 |
-
text += "\n"
|
88 |
-
|
89 |
-
return speech, text, speech_and_text_output.final
|
90 |
-
|
91 |
-
from scipy.io.wavfile import write as scipy_write
|
92 |
-
def streaming_input_callback():
|
93 |
-
final = False
|
94 |
-
max_wait_s = 15
|
95 |
-
wait_s = 0
|
96 |
-
translated_text_state = ""
|
97 |
-
sample_rate = 24000
|
98 |
-
while not transcoder.close:
|
99 |
-
translated_wav_segment, translated_text, final = get_buffered_output()
|
100 |
-
|
101 |
-
if translated_wav_segment is None and translated_text is None:
|
102 |
-
time.sleep(0.3)
|
103 |
-
wait_s += 0.3
|
104 |
-
if wait_s >= max_wait_s:
|
105 |
-
transcoder.close = True
|
106 |
-
continue
|
107 |
-
wait_s = 0
|
108 |
-
if translated_wav_segment is not None:
|
109 |
-
sample_rate, audio_bytes = translated_wav_segment
|
110 |
-
print("output sample rate", sample_rate)
|
111 |
-
translated_wav_segment = sample_rate, np.array(audio_bytes)
|
112 |
-
else:
|
113 |
-
translated_wav_segment = sample_rate, np.empty(0, dtype=np.int16)
|
114 |
-
|
115 |
-
if translated_text is not None:
|
116 |
-
translated_text_state += " | " + str(translated_text)
|
117 |
-
|
118 |
-
stream_output_text = translated_text_state
|
119 |
-
if translated_text is not None:
|
120 |
-
print("translated:", translated_text_state)
|
121 |
-
yield [
|
122 |
-
translated_wav_segment,
|
123 |
-
stream_output_text,
|
124 |
-
translated_text_state,
|
125 |
-
]
|
126 |
-
|
127 |
-
|
128 |
-
def streaming_callback_dummy():
|
129 |
-
i = 0
|
130 |
-
out_text = ""
|
131 |
-
while not transcoder.close:
|
132 |
-
if s.queue.empty():
|
133 |
-
yield (
|
134 |
-
(48000, np.empty(0, dtype=np.int16)), out_text, out_text
|
135 |
-
)
|
136 |
-
time.sleep(0.3)
|
137 |
-
else:
|
138 |
-
i += 1
|
139 |
-
out_text += " | " + str(i)
|
140 |
-
print(out_text)
|
141 |
-
audio = s.queue.get_nowait()
|
142 |
-
if i == 0:
|
143 |
-
print(audio[0], type(audio[1]))
|
144 |
-
s.queue.task_done()
|
145 |
-
yield audio, out_text, out_text
|
146 |
-
|
147 |
-
def clear():
|
148 |
-
logger.debug(f"Clearing State")
|
149 |
-
return [bytes(), ""]
|
150 |
-
|
151 |
-
|
152 |
-
def blocks():
|
153 |
-
with gr.Blocks() as demo:
|
154 |
-
|
155 |
-
with gr.Row():
|
156 |
-
# TODO: add target language switching
|
157 |
-
target_language = gr.Dropdown(
|
158 |
-
label="Target language",
|
159 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
160 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
161 |
-
)
|
162 |
-
|
163 |
-
translated_text_state = gr.State("")
|
164 |
-
|
165 |
-
input_audio = gr.Audio(
|
166 |
-
label="Input Audio",
|
167 |
-
sources=["microphone"],
|
168 |
-
streaming=True,
|
169 |
-
)
|
170 |
-
|
171 |
-
output_translation_segment = gr.Audio(
|
172 |
-
label="Translated audio segment",
|
173 |
-
autoplay=True,
|
174 |
-
streaming=True,
|
175 |
-
)
|
176 |
-
|
177 |
-
# Output text segment
|
178 |
-
stream_output_text = gr.Textbox(label="Translated text")
|
179 |
-
|
180 |
-
input_audio.clear(
|
181 |
-
clear, None, [output_translation_segment, translated_text_state]
|
182 |
-
)
|
183 |
-
input_audio.start_recording(
|
184 |
-
clear, None, [output_translation_segment, translated_text_state]
|
185 |
-
).then(
|
186 |
-
start_recording
|
187 |
-
).then(
|
188 |
-
# TODO: streaming speech autoplay works fine with streaming_callback_dummy,
|
189 |
-
# but speech output from streaming_input_callback has a huge delay
|
190 |
-
# when comparing print/debugging logs vs. output speech
|
191 |
-
# TODO: text output works fine with one output, but is not
|
192 |
-
# updating when output is both text + speech
|
193 |
-
# streaming_callback_dummy,
|
194 |
-
streaming_input_callback,
|
195 |
-
None,
|
196 |
-
[
|
197 |
-
output_translation_segment,
|
198 |
-
stream_output_text,
|
199 |
-
translated_text_state,
|
200 |
-
]
|
201 |
-
)
|
202 |
-
input_audio.stop_recording(
|
203 |
-
stop_recording
|
204 |
-
)
|
205 |
-
input_audio.stream(
|
206 |
-
# TODO: *only when streaming speech output* about half the time
|
207 |
-
# there is some race condition in gradio where process_incoming_bytes
|
208 |
-
# stops getting called once the first speech chunk is yield-ed
|
209 |
-
# in streaming_input_callback (or streaming_callback_dummy)
|
210 |
-
process_incoming_bytes, [input_audio], None
|
211 |
-
)
|
212 |
-
|
213 |
-
demo.launch(server_port=6010)
|
214 |
-
|
215 |
-
blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/sample_input.mp3
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:982369687f05bf8fcd6923c4ffcccda0fcce92f44eceae5a9d00a431f07ea87b
|
3 |
-
size 10272
|
|
|
|
|
|
|
|
assets/sample_input_2.mp3
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6a505a4641e3f5f0ddec9508832793aa20e63d2545530b66bc04a9bd19a742e6
|
3 |
-
size 30624
|
|
|
|
|
|
|
|
lang_list.py
DELETED
@@ -1,254 +0,0 @@
|
|
1 |
-
# Language dict
|
2 |
-
language_code_to_name = {
|
3 |
-
"afr": "Afrikaans",
|
4 |
-
"amh": "Amharic",
|
5 |
-
"arb": "Modern Standard Arabic",
|
6 |
-
"ary": "Moroccan Arabic",
|
7 |
-
"arz": "Egyptian Arabic",
|
8 |
-
"asm": "Assamese",
|
9 |
-
"ast": "Asturian",
|
10 |
-
"azj": "North Azerbaijani",
|
11 |
-
"bel": "Belarusian",
|
12 |
-
"ben": "Bengali",
|
13 |
-
"bos": "Bosnian",
|
14 |
-
"bul": "Bulgarian",
|
15 |
-
"cat": "Catalan",
|
16 |
-
"ceb": "Cebuano",
|
17 |
-
"ces": "Czech",
|
18 |
-
"ckb": "Central Kurdish",
|
19 |
-
"cmn": "Mandarin Chinese",
|
20 |
-
"cym": "Welsh",
|
21 |
-
"dan": "Danish",
|
22 |
-
"deu": "German",
|
23 |
-
"ell": "Greek",
|
24 |
-
"eng": "English",
|
25 |
-
"est": "Estonian",
|
26 |
-
"eus": "Basque",
|
27 |
-
"fin": "Finnish",
|
28 |
-
"fra": "French",
|
29 |
-
"gaz": "West Central Oromo",
|
30 |
-
"gle": "Irish",
|
31 |
-
"glg": "Galician",
|
32 |
-
"guj": "Gujarati",
|
33 |
-
"heb": "Hebrew",
|
34 |
-
"hin": "Hindi",
|
35 |
-
"hrv": "Croatian",
|
36 |
-
"hun": "Hungarian",
|
37 |
-
"hye": "Armenian",
|
38 |
-
"ibo": "Igbo",
|
39 |
-
"ind": "Indonesian",
|
40 |
-
"isl": "Icelandic",
|
41 |
-
"ita": "Italian",
|
42 |
-
"jav": "Javanese",
|
43 |
-
"jpn": "Japanese",
|
44 |
-
"kam": "Kamba",
|
45 |
-
"kan": "Kannada",
|
46 |
-
"kat": "Georgian",
|
47 |
-
"kaz": "Kazakh",
|
48 |
-
"kea": "Kabuverdianu",
|
49 |
-
"khk": "Halh Mongolian",
|
50 |
-
"khm": "Khmer",
|
51 |
-
"kir": "Kyrgyz",
|
52 |
-
"kor": "Korean",
|
53 |
-
"lao": "Lao",
|
54 |
-
"lit": "Lithuanian",
|
55 |
-
"ltz": "Luxembourgish",
|
56 |
-
"lug": "Ganda",
|
57 |
-
"luo": "Luo",
|
58 |
-
"lvs": "Standard Latvian",
|
59 |
-
"mai": "Maithili",
|
60 |
-
"mal": "Malayalam",
|
61 |
-
"mar": "Marathi",
|
62 |
-
"mkd": "Macedonian",
|
63 |
-
"mlt": "Maltese",
|
64 |
-
"mni": "Meitei",
|
65 |
-
"mya": "Burmese",
|
66 |
-
"nld": "Dutch",
|
67 |
-
"nno": "Norwegian Nynorsk",
|
68 |
-
"nob": "Norwegian Bokm\u00e5l",
|
69 |
-
"npi": "Nepali",
|
70 |
-
"nya": "Nyanja",
|
71 |
-
"oci": "Occitan",
|
72 |
-
"ory": "Odia",
|
73 |
-
"pan": "Punjabi",
|
74 |
-
"pbt": "Southern Pashto",
|
75 |
-
"pes": "Western Persian",
|
76 |
-
"pol": "Polish",
|
77 |
-
"por": "Portuguese",
|
78 |
-
"ron": "Romanian",
|
79 |
-
"rus": "Russian",
|
80 |
-
"slk": "Slovak",
|
81 |
-
"slv": "Slovenian",
|
82 |
-
"sna": "Shona",
|
83 |
-
"snd": "Sindhi",
|
84 |
-
"som": "Somali",
|
85 |
-
"spa": "Spanish",
|
86 |
-
"srp": "Serbian",
|
87 |
-
"swe": "Swedish",
|
88 |
-
"swh": "Swahili",
|
89 |
-
"tam": "Tamil",
|
90 |
-
"tel": "Telugu",
|
91 |
-
"tgk": "Tajik",
|
92 |
-
"tgl": "Tagalog",
|
93 |
-
"tha": "Thai",
|
94 |
-
"tur": "Turkish",
|
95 |
-
"ukr": "Ukrainian",
|
96 |
-
"urd": "Urdu",
|
97 |
-
"uzn": "Northern Uzbek",
|
98 |
-
"vie": "Vietnamese",
|
99 |
-
"xho": "Xhosa",
|
100 |
-
"yor": "Yoruba",
|
101 |
-
"yue": "Cantonese",
|
102 |
-
"zlm": "Colloquial Malay",
|
103 |
-
"zsm": "Standard Malay",
|
104 |
-
"zul": "Zulu",
|
105 |
-
}
|
106 |
-
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
107 |
-
|
108 |
-
# Source langs: S2ST / S2TT / ASR don't need source lang
|
109 |
-
# T2TT / T2ST use this
|
110 |
-
text_source_language_codes = [
|
111 |
-
"afr",
|
112 |
-
"amh",
|
113 |
-
"arb",
|
114 |
-
"ary",
|
115 |
-
"arz",
|
116 |
-
"asm",
|
117 |
-
"azj",
|
118 |
-
"bel",
|
119 |
-
"ben",
|
120 |
-
"bos",
|
121 |
-
"bul",
|
122 |
-
"cat",
|
123 |
-
"ceb",
|
124 |
-
"ces",
|
125 |
-
"ckb",
|
126 |
-
"cmn",
|
127 |
-
"cym",
|
128 |
-
"dan",
|
129 |
-
"deu",
|
130 |
-
"ell",
|
131 |
-
"eng",
|
132 |
-
"est",
|
133 |
-
"eus",
|
134 |
-
"fin",
|
135 |
-
"fra",
|
136 |
-
"gaz",
|
137 |
-
"gle",
|
138 |
-
"glg",
|
139 |
-
"guj",
|
140 |
-
"heb",
|
141 |
-
"hin",
|
142 |
-
"hrv",
|
143 |
-
"hun",
|
144 |
-
"hye",
|
145 |
-
"ibo",
|
146 |
-
"ind",
|
147 |
-
"isl",
|
148 |
-
"ita",
|
149 |
-
"jav",
|
150 |
-
"jpn",
|
151 |
-
"kan",
|
152 |
-
"kat",
|
153 |
-
"kaz",
|
154 |
-
"khk",
|
155 |
-
"khm",
|
156 |
-
"kir",
|
157 |
-
"kor",
|
158 |
-
"lao",
|
159 |
-
"lit",
|
160 |
-
"lug",
|
161 |
-
"luo",
|
162 |
-
"lvs",
|
163 |
-
"mai",
|
164 |
-
"mal",
|
165 |
-
"mar",
|
166 |
-
"mkd",
|
167 |
-
"mlt",
|
168 |
-
"mni",
|
169 |
-
"mya",
|
170 |
-
"nld",
|
171 |
-
"nno",
|
172 |
-
"nob",
|
173 |
-
"npi",
|
174 |
-
"nya",
|
175 |
-
"ory",
|
176 |
-
"pan",
|
177 |
-
"pbt",
|
178 |
-
"pes",
|
179 |
-
"pol",
|
180 |
-
"por",
|
181 |
-
"ron",
|
182 |
-
"rus",
|
183 |
-
"slk",
|
184 |
-
"slv",
|
185 |
-
"sna",
|
186 |
-
"snd",
|
187 |
-
"som",
|
188 |
-
"spa",
|
189 |
-
"srp",
|
190 |
-
"swe",
|
191 |
-
"swh",
|
192 |
-
"tam",
|
193 |
-
"tel",
|
194 |
-
"tgk",
|
195 |
-
"tgl",
|
196 |
-
"tha",
|
197 |
-
"tur",
|
198 |
-
"ukr",
|
199 |
-
"urd",
|
200 |
-
"uzn",
|
201 |
-
"vie",
|
202 |
-
"yor",
|
203 |
-
"yue",
|
204 |
-
"zsm",
|
205 |
-
"zul",
|
206 |
-
]
|
207 |
-
TEXT_SOURCE_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in text_source_language_codes])
|
208 |
-
|
209 |
-
# Target langs:
|
210 |
-
# S2ST / T2ST
|
211 |
-
s2st_target_language_codes = [
|
212 |
-
"eng",
|
213 |
-
"arb",
|
214 |
-
"ben",
|
215 |
-
"cat",
|
216 |
-
"ces",
|
217 |
-
"cmn",
|
218 |
-
"cym",
|
219 |
-
"dan",
|
220 |
-
"deu",
|
221 |
-
"est",
|
222 |
-
"fin",
|
223 |
-
"fra",
|
224 |
-
"hin",
|
225 |
-
"ind",
|
226 |
-
"ita",
|
227 |
-
"jpn",
|
228 |
-
"kor",
|
229 |
-
"mlt",
|
230 |
-
"nld",
|
231 |
-
"pes",
|
232 |
-
"pol",
|
233 |
-
"por",
|
234 |
-
"ron",
|
235 |
-
"rus",
|
236 |
-
"slk",
|
237 |
-
"spa",
|
238 |
-
"swe",
|
239 |
-
"swh",
|
240 |
-
"tel",
|
241 |
-
"tgl",
|
242 |
-
"tha",
|
243 |
-
"tur",
|
244 |
-
"ukr",
|
245 |
-
"urd",
|
246 |
-
"uzn",
|
247 |
-
"vie",
|
248 |
-
]
|
249 |
-
S2ST_TARGET_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in s2st_target_language_codes])
|
250 |
-
|
251 |
-
# S2TT / ASR
|
252 |
-
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
253 |
-
# T2TT
|
254 |
-
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m4t_app.py
DELETED
@@ -1,463 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import os
|
4 |
-
|
5 |
-
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
import torchaudio
|
9 |
-
from seamless_communication.models.inference.translator import Translator
|
10 |
-
|
11 |
-
from lang_list import (
|
12 |
-
LANGUAGE_NAME_TO_CODE,
|
13 |
-
S2ST_TARGET_LANGUAGE_NAMES,
|
14 |
-
S2TT_TARGET_LANGUAGE_NAMES,
|
15 |
-
T2TT_TARGET_LANGUAGE_NAMES,
|
16 |
-
TEXT_SOURCE_LANGUAGE_NAMES,
|
17 |
-
)
|
18 |
-
|
19 |
-
DESCRIPTION = """# SeamlessM4T
|
20 |
-
|
21 |
-
# mduppes aaaaaa
|
22 |
-
|
23 |
-
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
24 |
-
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
25 |
-
|
26 |
-
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
27 |
-
translation and more, without relying on multiple separate models.
|
28 |
-
"""
|
29 |
-
|
30 |
-
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
|
31 |
-
|
32 |
-
TASK_NAMES = [
|
33 |
-
"S2ST (Speech to Speech translation)",
|
34 |
-
"S2TT (Speech to Text translation)",
|
35 |
-
"T2ST (Text to Speech translation)",
|
36 |
-
"T2TT (Text to Text translation)",
|
37 |
-
"ASR (Automatic Speech Recognition)",
|
38 |
-
]
|
39 |
-
AUDIO_SAMPLE_RATE = 16000.0
|
40 |
-
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
41 |
-
DEFAULT_TARGET_LANGUAGE = "French"
|
42 |
-
|
43 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
44 |
-
print("DEVICE", device)
|
45 |
-
translator = Translator(
|
46 |
-
model_name_or_card="seamlessM4T_medium",
|
47 |
-
vocoder_name_or_card="vocoder_36langs",
|
48 |
-
device=device,
|
49 |
-
# dtype=torch.float16,
|
50 |
-
# For CPU Mode need to use 32, float16 causes errors downstream
|
51 |
-
dtype=torch.float32,
|
52 |
-
)
|
53 |
-
|
54 |
-
def get_translator():
|
55 |
-
return translator
|
56 |
-
|
57 |
-
|
58 |
-
def transcribe(audio):
|
59 |
-
print(audio)
|
60 |
-
text = p(audio)["text"]
|
61 |
-
return text
|
62 |
-
|
63 |
-
def transcribe_state(audio, state = ""):
|
64 |
-
print(audio)
|
65 |
-
text = p(audio)["text"]
|
66 |
-
state += text + " "
|
67 |
-
return state, state
|
68 |
-
|
69 |
-
|
70 |
-
def predict(
|
71 |
-
task_name: str,
|
72 |
-
audio_source: str,
|
73 |
-
input_audio_mic: str | None,
|
74 |
-
input_audio_file: str | None,
|
75 |
-
input_text: str | None,
|
76 |
-
source_language: str | None,
|
77 |
-
target_language: str,
|
78 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
79 |
-
task_name = task_name.split()[0]
|
80 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
81 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
82 |
-
|
83 |
-
if task_name in ["S2ST", "S2TT", "ASR"]:
|
84 |
-
if audio_source == "microphone":
|
85 |
-
input_data = input_audio_mic
|
86 |
-
else:
|
87 |
-
input_data = input_audio_file
|
88 |
-
|
89 |
-
arr, org_sr = torchaudio.load(input_data)
|
90 |
-
print(task_name, audio_source, input_audio_mic, type(input_audio_file), type(input_text), source_language, target_language)
|
91 |
-
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
92 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
93 |
-
if new_arr.shape[1] > max_length:
|
94 |
-
new_arr = new_arr[:, :max_length]
|
95 |
-
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
96 |
-
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
97 |
-
else:
|
98 |
-
input_data = input_text
|
99 |
-
text_out, wav, sr = translator.predict(
|
100 |
-
input=input_data,
|
101 |
-
task_str=task_name,
|
102 |
-
tgt_lang=target_language_code,
|
103 |
-
src_lang=source_language_code,
|
104 |
-
ngram_filtering=True,
|
105 |
-
sample_rate=AUDIO_SAMPLE_RATE,
|
106 |
-
)
|
107 |
-
print("translation response", text_out, wav, sr)
|
108 |
-
# text_out = "Testing"
|
109 |
-
# return None, text_out
|
110 |
-
if task_name in ["S2ST", "T2ST"]:
|
111 |
-
return (sr, wav.cpu().detach().numpy()), text_out
|
112 |
-
else:
|
113 |
-
return None, text_out
|
114 |
-
|
115 |
-
|
116 |
-
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
117 |
-
return predict(
|
118 |
-
task_name="S2ST",
|
119 |
-
audio_source="file",
|
120 |
-
input_audio_mic=None,
|
121 |
-
input_audio_file=input_audio_file,
|
122 |
-
input_text=None,
|
123 |
-
source_language=None,
|
124 |
-
target_language=target_language,
|
125 |
-
)
|
126 |
-
|
127 |
-
|
128 |
-
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
129 |
-
return predict(
|
130 |
-
task_name="S2TT",
|
131 |
-
audio_source="file",
|
132 |
-
input_audio_mic=None,
|
133 |
-
input_audio_file=input_audio_file,
|
134 |
-
input_text=None,
|
135 |
-
source_language=None,
|
136 |
-
target_language=target_language,
|
137 |
-
)
|
138 |
-
|
139 |
-
|
140 |
-
def process_t2st_example(
|
141 |
-
input_text: str, source_language: str, target_language: str
|
142 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
143 |
-
return predict(
|
144 |
-
task_name="T2ST",
|
145 |
-
audio_source="",
|
146 |
-
input_audio_mic=None,
|
147 |
-
input_audio_file=None,
|
148 |
-
input_text=input_text,
|
149 |
-
source_language=source_language,
|
150 |
-
target_language=target_language,
|
151 |
-
)
|
152 |
-
|
153 |
-
|
154 |
-
def process_t2tt_example(
|
155 |
-
input_text: str, source_language: str, target_language: str
|
156 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
157 |
-
return predict(
|
158 |
-
task_name="T2TT",
|
159 |
-
audio_source="",
|
160 |
-
input_audio_mic=None,
|
161 |
-
input_audio_file=None,
|
162 |
-
input_text=input_text,
|
163 |
-
source_language=source_language,
|
164 |
-
target_language=target_language,
|
165 |
-
)
|
166 |
-
|
167 |
-
|
168 |
-
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
169 |
-
return predict(
|
170 |
-
task_name="ASR",
|
171 |
-
audio_source="file",
|
172 |
-
input_audio_mic=None,
|
173 |
-
input_audio_file=input_audio_file,
|
174 |
-
input_text=None,
|
175 |
-
source_language=None,
|
176 |
-
target_language=target_language,
|
177 |
-
)
|
178 |
-
|
179 |
-
|
180 |
-
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
181 |
-
mic = audio_source == "microphone"
|
182 |
-
return (
|
183 |
-
gr.update(visible=mic, value=None), # input_audio_mic
|
184 |
-
gr.update(visible=not mic, value=None), # input_audio_file
|
185 |
-
)
|
186 |
-
|
187 |
-
|
188 |
-
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
189 |
-
task_name = task_name.split()[0]
|
190 |
-
if task_name == "S2ST":
|
191 |
-
return (
|
192 |
-
gr.update(visible=True), # audio_box
|
193 |
-
gr.update(visible=False), # input_text
|
194 |
-
gr.update(visible=False), # source_language
|
195 |
-
gr.update(
|
196 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
197 |
-
), # target_language
|
198 |
-
)
|
199 |
-
elif task_name == "S2TT":
|
200 |
-
return (
|
201 |
-
gr.update(visible=True), # audio_box
|
202 |
-
gr.update(visible=False), # input_text
|
203 |
-
gr.update(visible=False), # source_language
|
204 |
-
gr.update(
|
205 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
206 |
-
), # target_language
|
207 |
-
)
|
208 |
-
elif task_name == "T2ST":
|
209 |
-
return (
|
210 |
-
gr.update(visible=False), # audio_box
|
211 |
-
gr.update(visible=True), # input_text
|
212 |
-
gr.update(visible=True), # source_language
|
213 |
-
gr.update(
|
214 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
215 |
-
), # target_language
|
216 |
-
)
|
217 |
-
elif task_name == "T2TT":
|
218 |
-
return (
|
219 |
-
gr.update(visible=False), # audio_box
|
220 |
-
gr.update(visible=True), # input_text
|
221 |
-
gr.update(visible=True), # source_language
|
222 |
-
gr.update(
|
223 |
-
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
224 |
-
), # target_language
|
225 |
-
)
|
226 |
-
elif task_name == "ASR":
|
227 |
-
return (
|
228 |
-
gr.update(visible=True), # audio_box
|
229 |
-
gr.update(visible=False), # input_text
|
230 |
-
gr.update(visible=False), # source_language
|
231 |
-
gr.update(
|
232 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
233 |
-
), # target_language
|
234 |
-
)
|
235 |
-
else:
|
236 |
-
raise ValueError(f"Unknown task: {task_name}")
|
237 |
-
|
238 |
-
|
239 |
-
def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
240 |
-
task_name = task_name.split()[0]
|
241 |
-
if task_name in ["S2ST", "T2ST"]:
|
242 |
-
return (
|
243 |
-
gr.update(visible=True, value=None), # output_audio
|
244 |
-
gr.update(value=None), # output_text
|
245 |
-
)
|
246 |
-
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
247 |
-
return (
|
248 |
-
gr.update(visible=False, value=None), # output_audio
|
249 |
-
gr.update(value=None), # output_text
|
250 |
-
)
|
251 |
-
else:
|
252 |
-
raise ValueError(f"Unknown task: {task_name}")
|
253 |
-
|
254 |
-
|
255 |
-
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
256 |
-
task_name = task_name.split()[0]
|
257 |
-
return (
|
258 |
-
gr.update(visible=task_name == "S2ST"), # s2st_example_row
|
259 |
-
gr.update(visible=task_name == "S2TT"), # s2tt_example_row
|
260 |
-
gr.update(visible=task_name == "T2ST"), # t2st_example_row
|
261 |
-
gr.update(visible=task_name == "T2TT"), # t2tt_example_row
|
262 |
-
gr.update(visible=task_name == "ASR"), # asr_example_row
|
263 |
-
)
|
264 |
-
|
265 |
-
def m4t_demo():
|
266 |
-
|
267 |
-
with gr.Blocks(css="style.css") as demo:
|
268 |
-
gr.Markdown(DESCRIPTION)
|
269 |
-
gr.DuplicateButton(
|
270 |
-
value="Duplicate Space for private use",
|
271 |
-
elem_id="duplicate-button",
|
272 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
273 |
-
)
|
274 |
-
|
275 |
-
with gr.Group():
|
276 |
-
task_name = gr.Dropdown(
|
277 |
-
label="Task",
|
278 |
-
choices=TASK_NAMES,
|
279 |
-
value=TASK_NAMES[0],
|
280 |
-
)
|
281 |
-
|
282 |
-
|
283 |
-
with gr.Row():
|
284 |
-
source_language = gr.Dropdown(
|
285 |
-
label="Source language",
|
286 |
-
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
287 |
-
value="English",
|
288 |
-
visible=False,
|
289 |
-
)
|
290 |
-
target_language = gr.Dropdown(
|
291 |
-
label="Target language",
|
292 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
293 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
294 |
-
)
|
295 |
-
with gr.Row() as audio_box:
|
296 |
-
audio_source = gr.Radio(
|
297 |
-
label="Audio source",
|
298 |
-
choices=["file", "microphone"],
|
299 |
-
value="file",
|
300 |
-
)
|
301 |
-
input_audio_mic = gr.Audio(
|
302 |
-
label="Input speech",
|
303 |
-
type="filepath",
|
304 |
-
source="microphone",
|
305 |
-
visible=False,
|
306 |
-
)
|
307 |
-
input_audio_file = gr.Audio(
|
308 |
-
label="Input speech",
|
309 |
-
type="filepath",
|
310 |
-
source="upload",
|
311 |
-
visible=True,
|
312 |
-
)
|
313 |
-
input_text = gr.Textbox(label="Input text", visible=False)
|
314 |
-
btn = gr.Button("Translate")
|
315 |
-
with gr.Column():
|
316 |
-
output_audio = gr.Audio(
|
317 |
-
label="Translated speech",
|
318 |
-
autoplay=False,
|
319 |
-
streaming=False,
|
320 |
-
type="numpy",
|
321 |
-
)
|
322 |
-
output_text = gr.Textbox(label="Translated text")
|
323 |
-
|
324 |
-
with gr.Row(visible=True) as s2st_example_row:
|
325 |
-
s2st_examples = gr.Examples(
|
326 |
-
examples=[
|
327 |
-
["assets/sample_input.mp3", "French"],
|
328 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
329 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
330 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
331 |
-
],
|
332 |
-
inputs=[input_audio_file, target_language],
|
333 |
-
outputs=[output_audio, output_text],
|
334 |
-
fn=process_s2st_example,
|
335 |
-
cache_examples=CACHE_EXAMPLES,
|
336 |
-
)
|
337 |
-
with gr.Row(visible=False) as s2tt_example_row:
|
338 |
-
s2tt_examples = gr.Examples(
|
339 |
-
examples=[
|
340 |
-
["assets/sample_input.mp3", "French"],
|
341 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
342 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
343 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
344 |
-
],
|
345 |
-
inputs=[input_audio_file, target_language],
|
346 |
-
outputs=[output_audio, output_text],
|
347 |
-
fn=process_s2tt_example,
|
348 |
-
cache_examples=CACHE_EXAMPLES,
|
349 |
-
)
|
350 |
-
with gr.Row(visible=False) as t2st_example_row:
|
351 |
-
t2st_examples = gr.Examples(
|
352 |
-
examples=[
|
353 |
-
["My favorite animal is the elephant.", "English", "French"],
|
354 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
355 |
-
[
|
356 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
357 |
-
"English",
|
358 |
-
"Hindi",
|
359 |
-
],
|
360 |
-
[
|
361 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
362 |
-
"English",
|
363 |
-
"Spanish",
|
364 |
-
],
|
365 |
-
],
|
366 |
-
inputs=[input_text, source_language, target_language],
|
367 |
-
outputs=[output_audio, output_text],
|
368 |
-
fn=process_t2st_example,
|
369 |
-
cache_examples=CACHE_EXAMPLES,
|
370 |
-
)
|
371 |
-
with gr.Row(visible=False) as t2tt_example_row:
|
372 |
-
t2tt_examples = gr.Examples(
|
373 |
-
examples=[
|
374 |
-
["My favorite animal is the elephant.", "English", "French"],
|
375 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
376 |
-
[
|
377 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
378 |
-
"English",
|
379 |
-
"Hindi",
|
380 |
-
],
|
381 |
-
[
|
382 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
383 |
-
"English",
|
384 |
-
"Spanish",
|
385 |
-
],
|
386 |
-
],
|
387 |
-
inputs=[input_text, source_language, target_language],
|
388 |
-
outputs=[output_audio, output_text],
|
389 |
-
fn=process_t2tt_example,
|
390 |
-
cache_examples=CACHE_EXAMPLES,
|
391 |
-
)
|
392 |
-
with gr.Row(visible=False) as asr_example_row:
|
393 |
-
asr_examples = gr.Examples(
|
394 |
-
examples=[
|
395 |
-
["assets/sample_input.mp3", "English"],
|
396 |
-
["assets/sample_input_2.mp3", "English"],
|
397 |
-
],
|
398 |
-
inputs=[input_audio_file, target_language],
|
399 |
-
outputs=[output_audio, output_text],
|
400 |
-
fn=process_asr_example,
|
401 |
-
cache_examples=CACHE_EXAMPLES,
|
402 |
-
)
|
403 |
-
|
404 |
-
audio_source.change(
|
405 |
-
fn=update_audio_ui,
|
406 |
-
inputs=audio_source,
|
407 |
-
outputs=[
|
408 |
-
input_audio_mic,
|
409 |
-
input_audio_file,
|
410 |
-
],
|
411 |
-
queue=False,
|
412 |
-
api_name=False,
|
413 |
-
)
|
414 |
-
task_name.change(
|
415 |
-
fn=update_input_ui,
|
416 |
-
inputs=task_name,
|
417 |
-
outputs=[
|
418 |
-
audio_box,
|
419 |
-
input_text,
|
420 |
-
source_language,
|
421 |
-
target_language,
|
422 |
-
],
|
423 |
-
queue=False,
|
424 |
-
api_name=False,
|
425 |
-
).then(
|
426 |
-
fn=update_output_ui,
|
427 |
-
inputs=task_name,
|
428 |
-
outputs=[output_audio, output_text],
|
429 |
-
queue=False,
|
430 |
-
api_name=False,
|
431 |
-
).then(
|
432 |
-
fn=update_example_ui,
|
433 |
-
inputs=task_name,
|
434 |
-
outputs=[
|
435 |
-
s2st_example_row,
|
436 |
-
s2tt_example_row,
|
437 |
-
t2st_example_row,
|
438 |
-
t2tt_example_row,
|
439 |
-
asr_example_row,
|
440 |
-
],
|
441 |
-
queue=False,
|
442 |
-
api_name=False,
|
443 |
-
)
|
444 |
-
|
445 |
-
btn.click(
|
446 |
-
fn=predict,
|
447 |
-
inputs=[
|
448 |
-
task_name,
|
449 |
-
audio_source,
|
450 |
-
input_audio_mic,
|
451 |
-
input_audio_file,
|
452 |
-
input_text,
|
453 |
-
source_language,
|
454 |
-
target_language,
|
455 |
-
],
|
456 |
-
outputs=[output_audio, output_text],
|
457 |
-
api_name="run",
|
458 |
-
)
|
459 |
-
demo.queue(max_size=50).launch()
|
460 |
-
|
461 |
-
# Linking models to the space
|
462 |
-
# 'facebook/seamless-m4t-large'
|
463 |
-
# 'facebook/SONAR'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/vad_s2st_sc_24khz_main.yaml
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
agent_class: seamless_communication.streaming.agents.mma_m4t_s2st.SeamlessS2STJointVADAgent
|
2 |
-
# checkpoint: checkpoint_best.pt
|
3 |
-
monotonic_decoder_model_name: seamless_streaming_monotonic_decoder
|
4 |
-
unity_model_name: seamless_streaming_unity
|
5 |
-
sentencepiece_model: spm_256k_nllb100.model
|
6 |
-
|
7 |
-
task: s2st
|
8 |
-
tgt_lang: "eng"
|
9 |
-
min_unit_chunk_size: 50
|
10 |
-
decision_threshold: 0.7
|
11 |
-
no_early_stop: True
|
12 |
-
block_ngrams: True
|
13 |
-
vocoder_name: vocoder_pretssel
|
14 |
-
wav2vec_yaml: wav2vec.yaml
|
15 |
-
# min_starting_wait: 12
|
16 |
-
# min_starting_wait_w2vbert: 192
|
17 |
-
|
18 |
-
config_yaml: cfg_fbank_u2t.yaml
|
19 |
-
vocoder_sample_rate: 24000
|
20 |
-
upstream_idx: 1
|
21 |
-
detokenize_only: True
|
22 |
-
device: cuda:0
|
23 |
-
max_len_a: 0
|
24 |
-
max_len_b: 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
# TODO: fairseq2 install is complicated so currently done outside
|
2 |
-
|
3 |
-
# fairseq2==0.1.0
|
4 |
-
|
5 |
-
# git+https://github.com/facebookresearch/seamless_communication
|
6 |
-
# ./fairseq2
|
7 |
-
# ./seamless_communication
|
8 |
-
# comment this out to test fairseq1 first
|
9 |
-
# git+https://github.com/facebookresearch/SimulEval.git
|
10 |
-
gradio==3.41.0
|
11 |
-
huggingface_hub==0.16.4
|
12 |
-
# torch==2.1.0
|
13 |
-
# torchaudio==2.0.2
|
14 |
-
# transformers==4.32.1
|
15 |
-
pydub
|
16 |
-
g2p_en
|
17 |
-
colorlog
|
18 |
-
# git+ssh://git@github.com/facebookresearch/SimulEval.git
|
19 |
-
|
20 |
-
# Can't import fairseq1 together.. causes conflict:
|
21 |
-
#The conflict is caused by:
|
22 |
-
# The user requested simuleval 1.1.0 (from git+ssh://****@github.com/facebookresearch/SimulEval.git@tree_pipeline)
|
23 |
-
# seamless-communication 1.0.0 depends on simuleval 1.0.3.dev36+gd84fa60 (from git+https://github.com/mduppes/SimulEval.git@main)
|
24 |
-
# From fairseq1 pipeline
|
25 |
-
# git+ssh://git@github.com/fairinternal/fairseq-py.git@emma_incremental_decoder
|
26 |
-
# git+ssh://git@github.com/facebookresearch/SimulEval.git@tree_pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample_wav.py
DELETED
The diff for this file is too large to render.
See raw diff
|
|
simuleval_transcoder.py
DELETED
@@ -1,425 +0,0 @@
|
|
1 |
-
|
2 |
-
from typing import Any, List, Tuple, Union, Optional
|
3 |
-
import numpy as np
|
4 |
-
import soundfile
|
5 |
-
import io
|
6 |
-
import asyncio
|
7 |
-
from simuleval.agents.pipeline import TreeAgentPipeline
|
8 |
-
from simuleval.agents.states import AgentStates
|
9 |
-
from simuleval.data.segments import Segment, EmptySegment, SpeechSegment
|
10 |
-
import threading
|
11 |
-
import math
|
12 |
-
import logging
|
13 |
-
import sys
|
14 |
-
from pathlib import Path
|
15 |
-
import time
|
16 |
-
from g2p_en import G2p
|
17 |
-
import torch
|
18 |
-
import traceback
|
19 |
-
import time
|
20 |
-
import random
|
21 |
-
import colorlog
|
22 |
-
|
23 |
-
|
24 |
-
MODEL_SAMPLE_RATE = 16_000
|
25 |
-
|
26 |
-
logger = logging.getLogger(__name__)
|
27 |
-
logger.propagate = False
|
28 |
-
handler = colorlog.StreamHandler(stream=sys.stdout)
|
29 |
-
formatter = colorlog.ColoredFormatter(
|
30 |
-
"%(log_color)s[%(asctime)s][%(levelname)s][%(module)s]:%(reset)s %(message)s",
|
31 |
-
reset=True,
|
32 |
-
log_colors={
|
33 |
-
"DEBUG": "cyan",
|
34 |
-
"INFO": "green",
|
35 |
-
"WARNING": "yellow",
|
36 |
-
"ERROR": "red",
|
37 |
-
"CRITICAL": "red,bg_white",
|
38 |
-
},
|
39 |
-
)
|
40 |
-
handler.setFormatter(formatter)
|
41 |
-
logger.addHandler(handler)
|
42 |
-
logger.setLevel(logging.DEBUG)
|
43 |
-
|
44 |
-
|
45 |
-
class SpeechAndTextOutput:
|
46 |
-
def __init__(
|
47 |
-
self,
|
48 |
-
text: str = None,
|
49 |
-
speech_samples: list = None,
|
50 |
-
speech_sample_rate: float = None,
|
51 |
-
final: bool = False,
|
52 |
-
):
|
53 |
-
self.text = text
|
54 |
-
self.speech_samples = speech_samples
|
55 |
-
self.speech_sample_rate = speech_sample_rate
|
56 |
-
self.final = final
|
57 |
-
|
58 |
-
class OutputSegments:
|
59 |
-
def __init__(self, segments: Union[List[Segment], Segment]):
|
60 |
-
if isinstance(segments, Segment):
|
61 |
-
segments = [segments]
|
62 |
-
self.segments: List[Segment] = [s for s in segments]
|
63 |
-
|
64 |
-
@property
|
65 |
-
def is_empty(self):
|
66 |
-
return all(segment.is_empty for segment in self.segments)
|
67 |
-
|
68 |
-
@property
|
69 |
-
def finished(self):
|
70 |
-
return all(segment.finished for segment in self.segments)
|
71 |
-
|
72 |
-
def compute_length(self, g2p):
|
73 |
-
lengths = []
|
74 |
-
for segment in self.segments:
|
75 |
-
if segment.data_type == "text":
|
76 |
-
lengths.append(len([x for x in g2p(segment.content) if x != " "]))
|
77 |
-
elif segment.data_type == "speech":
|
78 |
-
lengths.append(len(segment.content) / MODEL_SAMPLE_RATE)
|
79 |
-
elif isinstance(segment, EmptySegment):
|
80 |
-
continue
|
81 |
-
else:
|
82 |
-
logger.warning(
|
83 |
-
f"Unexpected data_type: {segment.data_type} not in 'speech', 'text'"
|
84 |
-
)
|
85 |
-
return max(lengths)
|
86 |
-
|
87 |
-
@classmethod
|
88 |
-
def join_output_buffer(
|
89 |
-
cls, buffer: List[List[Segment]], output: SpeechAndTextOutput
|
90 |
-
):
|
91 |
-
num_segments = len(buffer[0])
|
92 |
-
for i in range(num_segments):
|
93 |
-
segment_list = [
|
94 |
-
buffer[j][i]
|
95 |
-
for j in range(len(buffer))
|
96 |
-
if buffer[j][i].data_type is not None
|
97 |
-
]
|
98 |
-
if len(segment_list) == 0:
|
99 |
-
continue
|
100 |
-
if len(set(segment.data_type for segment in segment_list)) != 1:
|
101 |
-
logger.warning(
|
102 |
-
f"Data type mismatch at {i}: {set(segment.data_type for segment in segment_list)}"
|
103 |
-
)
|
104 |
-
continue
|
105 |
-
data_type = segment_list[0].data_type
|
106 |
-
if data_type == "text":
|
107 |
-
if output.text is not None:
|
108 |
-
logger.warning("Multiple text outputs, overwriting!")
|
109 |
-
output.text = " ".join([segment.content for segment in segment_list])
|
110 |
-
elif data_type == "speech":
|
111 |
-
if output.speech_samples is not None:
|
112 |
-
logger.warning("Multiple speech outputs, overwriting!")
|
113 |
-
speech_out = []
|
114 |
-
for segment in segment_list:
|
115 |
-
speech_out += segment.content
|
116 |
-
output.speech_samples = speech_out
|
117 |
-
output.speech_sample_rate = segment.sample_rate
|
118 |
-
elif isinstance(segment_list[0], EmptySegment):
|
119 |
-
continue
|
120 |
-
else:
|
121 |
-
logger.warning(
|
122 |
-
f"Invalid output buffer data type: {data_type}, expected 'speech' or 'text"
|
123 |
-
)
|
124 |
-
|
125 |
-
return output
|
126 |
-
|
127 |
-
def __repr__(self) -> str:
|
128 |
-
repr_str = str(self.segments)
|
129 |
-
return f"{self.__class__.__name__}(\n\t{repr_str}\n)"
|
130 |
-
|
131 |
-
|
132 |
-
def convert_waveform(
|
133 |
-
waveform: Union[np.ndarray, torch.Tensor],
|
134 |
-
sample_rate: int,
|
135 |
-
normalize_volume: bool = False,
|
136 |
-
to_mono: bool = False,
|
137 |
-
to_sample_rate: Optional[int] = None,
|
138 |
-
) -> Tuple[Union[np.ndarray, torch.Tensor], int]:
|
139 |
-
"""convert a waveform:
|
140 |
-
- to a target sample rate
|
141 |
-
- from multi-channel to mono channel
|
142 |
-
- volume normalization
|
143 |
-
|
144 |
-
Args:
|
145 |
-
waveform (numpy.ndarray or torch.Tensor): 2D original waveform
|
146 |
-
(channels x length)
|
147 |
-
sample_rate (int): original sample rate
|
148 |
-
normalize_volume (bool): perform volume normalization
|
149 |
-
to_mono (bool): convert to mono channel if having multiple channels
|
150 |
-
to_sample_rate (Optional[int]): target sample rate
|
151 |
-
Returns:
|
152 |
-
waveform (numpy.ndarray): converted 2D waveform (channels x length)
|
153 |
-
sample_rate (float): target sample rate
|
154 |
-
"""
|
155 |
-
try:
|
156 |
-
import torchaudio.sox_effects as ta_sox
|
157 |
-
except ImportError:
|
158 |
-
raise ImportError("Please install torchaudio: pip install torchaudio")
|
159 |
-
|
160 |
-
effects = []
|
161 |
-
if normalize_volume:
|
162 |
-
effects.append(["gain", "-n"])
|
163 |
-
if to_sample_rate is not None and to_sample_rate != sample_rate:
|
164 |
-
effects.append(["rate", f"{to_sample_rate}"])
|
165 |
-
if to_mono and waveform.shape[0] > 1:
|
166 |
-
effects.append(["channels", "1"])
|
167 |
-
if len(effects) > 0:
|
168 |
-
is_np_input = isinstance(waveform, np.ndarray)
|
169 |
-
_waveform = torch.from_numpy(waveform) if is_np_input else waveform
|
170 |
-
converted, converted_sample_rate = ta_sox.apply_effects_tensor(
|
171 |
-
_waveform, sample_rate, effects
|
172 |
-
)
|
173 |
-
if is_np_input:
|
174 |
-
converted = converted.numpy()
|
175 |
-
return converted, converted_sample_rate
|
176 |
-
return waveform, sample_rate
|
177 |
-
|
178 |
-
class SimulevalTranscoder:
|
179 |
-
def __init__(self, agent, sample_rate, debug, buffer_limit):
|
180 |
-
# agent is stateless
|
181 |
-
self.agent = agent
|
182 |
-
self.input_queue = asyncio.Queue()
|
183 |
-
self.output_queue = asyncio.Queue()
|
184 |
-
self.states = self.agent.build_states()
|
185 |
-
if debug:
|
186 |
-
self.get_states_root().debug = True
|
187 |
-
self.incoming_sample_rate = sample_rate
|
188 |
-
self.close = False
|
189 |
-
self.g2p = G2p()
|
190 |
-
|
191 |
-
# buffer all outgoing translations within this amount of time
|
192 |
-
self.output_buffer_idle_ms = 5000
|
193 |
-
self.output_buffer_size_limit = (
|
194 |
-
buffer_limit # phonemes for text, seconds for speech
|
195 |
-
)
|
196 |
-
self.output_buffer_cur_size = 0
|
197 |
-
self.output_buffer: List[List[Segment]] = []
|
198 |
-
self.speech_output_sample_rate = None
|
199 |
-
|
200 |
-
self.last_output_ts = time.time() * 1000
|
201 |
-
self.timeout_ms = (
|
202 |
-
30000 # close the transcoder thread after this amount of silence
|
203 |
-
)
|
204 |
-
self.first_input_ts = None
|
205 |
-
self.first_output_ts = None
|
206 |
-
self.debug = debug
|
207 |
-
self.debug_ts = f"{time.time()}_{random.randint(1000, 9999)}"
|
208 |
-
if self.debug:
|
209 |
-
debug_folder = Path(__file__).resolve().parent.parent / "debug"
|
210 |
-
self.test_incoming_wav = soundfile.SoundFile(
|
211 |
-
debug_folder / f"{self.debug_ts}_test_incoming.wav",
|
212 |
-
mode="w+",
|
213 |
-
format="WAV",
|
214 |
-
subtype="PCM_16",
|
215 |
-
samplerate=self.incoming_sample_rate,
|
216 |
-
channels=1,
|
217 |
-
)
|
218 |
-
self.get_states_root().test_input_segments_wav = soundfile.SoundFile(
|
219 |
-
debug_folder / f"{self.debug_ts}_test_input_segments.wav",
|
220 |
-
mode="w+",
|
221 |
-
format="WAV",
|
222 |
-
samplerate=MODEL_SAMPLE_RATE,
|
223 |
-
channels=1,
|
224 |
-
)
|
225 |
-
|
226 |
-
def get_states_root(self) -> AgentStates:
|
227 |
-
if isinstance(self.agent, TreeAgentPipeline):
|
228 |
-
# self.states is a dict
|
229 |
-
return self.states[self.agent.source_module]
|
230 |
-
else:
|
231 |
-
# self.states is a list
|
232 |
-
return self.states[0]
|
233 |
-
|
234 |
-
def reset_states(self):
|
235 |
-
if isinstance(self.agent, TreeAgentPipeline):
|
236 |
-
states_iter = self.states.values()
|
237 |
-
else:
|
238 |
-
states_iter = self.states
|
239 |
-
for state in states_iter:
|
240 |
-
state.reset()
|
241 |
-
|
242 |
-
def debug_log(self, *args):
|
243 |
-
if self.debug:
|
244 |
-
logger.info(*args)
|
245 |
-
|
246 |
-
def process_incoming_bytes(self, incoming_bytes, target_language, sample_rate):
|
247 |
-
# TODO: currently just taking sample rate here, refactor sample rate
|
248 |
-
# bytes is 16bit signed int
|
249 |
-
self.incoming_sample_rate = sample_rate
|
250 |
-
segment, sr = self._preprocess_wav(incoming_bytes)
|
251 |
-
|
252 |
-
segment = SpeechSegment(
|
253 |
-
content=segment, sample_rate=sr, tgt_lang=target_language
|
254 |
-
)
|
255 |
-
# # segment is array([0, 0, 0, ..., 0, 0, 0], dtype=int16)
|
256 |
-
self.input_queue.put_nowait(segment)
|
257 |
-
print("process_incoming: put input_queue")
|
258 |
-
|
259 |
-
def get_input_segment(self):
|
260 |
-
if self.input_queue.empty():
|
261 |
-
return None
|
262 |
-
chunk = self.input_queue.get_nowait()
|
263 |
-
self.input_queue.task_done()
|
264 |
-
return chunk
|
265 |
-
|
266 |
-
def _preprocess_wav(self, data: Any) -> Tuple[np.ndarray, int]:
|
267 |
-
segment, sample_rate = soundfile.read(
|
268 |
-
io.BytesIO(data),
|
269 |
-
dtype="float32",
|
270 |
-
always_2d=True,
|
271 |
-
frames=-1,
|
272 |
-
start=0,
|
273 |
-
format="RAW",
|
274 |
-
subtype="PCM_16",
|
275 |
-
samplerate=self.incoming_sample_rate,
|
276 |
-
channels=1,
|
277 |
-
)
|
278 |
-
if self.debug:
|
279 |
-
self.test_incoming_wav.seek(0, soundfile.SEEK_END)
|
280 |
-
self.test_incoming_wav.write(segment)
|
281 |
-
|
282 |
-
segment = segment.T
|
283 |
-
segment, new_sample_rate = convert_waveform(
|
284 |
-
segment,
|
285 |
-
sample_rate,
|
286 |
-
normalize_volume=False,
|
287 |
-
to_mono=True,
|
288 |
-
to_sample_rate=MODEL_SAMPLE_RATE,
|
289 |
-
)
|
290 |
-
|
291 |
-
assert MODEL_SAMPLE_RATE == new_sample_rate
|
292 |
-
segment = segment.squeeze(axis=0)
|
293 |
-
return segment, new_sample_rate
|
294 |
-
|
295 |
-
def process_pipeline_impl(self, input_segment):
|
296 |
-
try:
|
297 |
-
with torch.no_grad():
|
298 |
-
output_segment = OutputSegments(
|
299 |
-
self.agent.pushpop(input_segment, self.states)
|
300 |
-
)
|
301 |
-
if (
|
302 |
-
self.get_states_root().first_input_ts is not None
|
303 |
-
and self.first_input_ts is None
|
304 |
-
):
|
305 |
-
# TODO: this is hacky
|
306 |
-
self.first_input_ts = self.get_states_root().first_input_ts
|
307 |
-
|
308 |
-
if not output_segment.is_empty:
|
309 |
-
print("PUT IN OUTPUT QUEUE")
|
310 |
-
self.output_queue.put_nowait(output_segment)
|
311 |
-
|
312 |
-
if output_segment.finished:
|
313 |
-
print("OUTPUT SEGMENT IS FINISHED. Resetting states.")
|
314 |
-
|
315 |
-
self.reset_states()
|
316 |
-
|
317 |
-
if self.debug:
|
318 |
-
# when we rebuild states, this value is reset to whatever
|
319 |
-
# is in the system dir config, which defaults debug=False.
|
320 |
-
self.get_states_root().debug = True
|
321 |
-
except Exception as e:
|
322 |
-
logger.error(f"Got exception while processing pipeline: {e}")
|
323 |
-
traceback.print_exc()
|
324 |
-
return input_segment
|
325 |
-
|
326 |
-
def process_pipeline_loop(self):
|
327 |
-
if self.close:
|
328 |
-
print("transcoder closed")
|
329 |
-
return # closes the thread
|
330 |
-
|
331 |
-
print("processing_pipeline")
|
332 |
-
while not self.close:
|
333 |
-
input_segment = self.get_input_segment()
|
334 |
-
if input_segment is None:
|
335 |
-
if self.get_states_root().is_fresh_state: # TODO: this is hacky
|
336 |
-
time.sleep(0.3)
|
337 |
-
print("loop: input_queue empty")
|
338 |
-
else:
|
339 |
-
time.sleep(0.03)
|
340 |
-
continue
|
341 |
-
print("loop: got input_segment")
|
342 |
-
self.process_pipeline_impl(input_segment)
|
343 |
-
print("finished processing_pipeline")
|
344 |
-
|
345 |
-
def process_pipeline_once(self):
|
346 |
-
if self.close:
|
347 |
-
return
|
348 |
-
|
349 |
-
self.debug_log("processing pipeline once")
|
350 |
-
input_segment = self.get_input_segment()
|
351 |
-
if input_segment is None:
|
352 |
-
return
|
353 |
-
self.process_pipeline_impl(input_segment)
|
354 |
-
self.debug_log("finished processing_pipeline_once")
|
355 |
-
|
356 |
-
def get_output_segment(self):
|
357 |
-
if self.output_queue.empty():
|
358 |
-
return None
|
359 |
-
|
360 |
-
output_chunk = self.output_queue.get_nowait()
|
361 |
-
self.output_queue.task_done()
|
362 |
-
return output_chunk
|
363 |
-
|
364 |
-
def start(self):
|
365 |
-
print("starting transcoder in a thread")
|
366 |
-
threading.Thread(target=self.process_pipeline_loop).start()
|
367 |
-
|
368 |
-
def first_translation_time(self):
|
369 |
-
return round((self.first_output_ts - self.first_input_ts) / 1000, 2)
|
370 |
-
|
371 |
-
def get_buffered_output(self) -> SpeechAndTextOutput:
|
372 |
-
now = time.time() * 1000
|
373 |
-
print(f"get_buffered_output queue size: {self.output_queue.qsize()}")
|
374 |
-
while not self.output_queue.empty():
|
375 |
-
tmp_out = self.get_output_segment()
|
376 |
-
if tmp_out and tmp_out.compute_length(self.g2p) > 0:
|
377 |
-
if len(self.output_buffer) == 0:
|
378 |
-
self.last_output_ts = now
|
379 |
-
self._populate_output_buffer(tmp_out)
|
380 |
-
self._increment_output_buffer_size(tmp_out)
|
381 |
-
|
382 |
-
if tmp_out.finished:
|
383 |
-
self.debug_log("tmp_out.finished")
|
384 |
-
res = self._gather_output_buffer_data(final=True)
|
385 |
-
self.debug_log(f"gathered output data: {res}")
|
386 |
-
self.output_buffer = []
|
387 |
-
self.increment_output_buffer_size = 0
|
388 |
-
self.last_output_ts = now
|
389 |
-
self.first_output_ts = now
|
390 |
-
return res
|
391 |
-
else:
|
392 |
-
self.debug_log("tmp_out.compute_length is not > 0")
|
393 |
-
|
394 |
-
if len(self.output_buffer) > 0 and (
|
395 |
-
now - self.last_output_ts >= self.output_buffer_idle_ms
|
396 |
-
or self.output_buffer_cur_size >= self.output_buffer_size_limit
|
397 |
-
):
|
398 |
-
self.debug_log(
|
399 |
-
"[get_buffered_output] output_buffer is not empty. getting res to return."
|
400 |
-
)
|
401 |
-
self.last_output_ts = now
|
402 |
-
res = self._gather_output_buffer_data(final=False)
|
403 |
-
self.debug_log(f"gathered output data: {res}")
|
404 |
-
self.output_buffer = []
|
405 |
-
self.output_buffer_phoneme_count = 0
|
406 |
-
self.first_output_ts = now
|
407 |
-
return res
|
408 |
-
else:
|
409 |
-
self.debug_log("[get_buffered_output] output_buffer is empty...")
|
410 |
-
return None
|
411 |
-
|
412 |
-
def _gather_output_buffer_data(self, final):
|
413 |
-
output = SpeechAndTextOutput()
|
414 |
-
output.final = final
|
415 |
-
output = OutputSegments.join_output_buffer(self.output_buffer, output)
|
416 |
-
return output
|
417 |
-
|
418 |
-
def _increment_output_buffer_size(self, segment: OutputSegments):
|
419 |
-
self.output_buffer_cur_size += segment.compute_length(self.g2p)
|
420 |
-
|
421 |
-
def _populate_output_buffer(self, segment: OutputSegments):
|
422 |
-
self.output_buffer.append(segment.segments)
|
423 |
-
|
424 |
-
def _compute_phoneme_count(self, string: str) -> int:
|
425 |
-
return len([x for x in self.g2p(string) if x != " "])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
style.css
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
h1 {
|
2 |
-
text-align: center;
|
3 |
-
}
|
4 |
-
|
5 |
-
#duplicate-button {
|
6 |
-
margin: auto;
|
7 |
-
color: #fff;
|
8 |
-
background: #1565c0;
|
9 |
-
border-radius: 100vh;
|
10 |
-
}
|
11 |
-
|
12 |
-
#component-0 {
|
13 |
-
max-width: 730px;
|
14 |
-
margin: auto;
|
15 |
-
padding-top: 1.5rem;
|
16 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|