Spaces:
Runtime error
Runtime error
File size: 14,707 Bytes
ee0444e 8fb8950 df28e5a 8fb8950 4936337 8fb8950 df28e5a 8fb8950 28aa542 8fb8950 ee0444e 8fb8950 ee0444e 8fb8950 ee0444e df28e5a 8fb8950 df28e5a ee0444e 8fb8950 ee0444e 4936337 ee0444e 4936337 ee0444e 4936337 ee0444e 4936337 ee0444e 4936337 8fb8950 df28e5a 8fb8950 df28e5a 8fb8950 df28e5a 8fb8950 df28e5a 8fb8950 df28e5a 8fb8950 4936337 8fb8950 df28e5a 8fb8950 df28e5a 8fb8950 4936337 a316967 4936337 a316967 4936337 ee0444e 4936337 ee0444e 4936337 a316967 4936337 8fb8950 4936337 8fb8950 da27b09 6d56c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
from __future__ import annotations
import os
import gradio as gr
import numpy as np
import torch
import torchaudio
from seamless_communication.models.inference.translator import Translator
from lang_list import (
LANGUAGE_NAME_TO_CODE,
S2ST_TARGET_LANGUAGE_NAMES,
S2TT_TARGET_LANGUAGE_NAMES,
T2TT_TARGET_LANGUAGE_NAMES,
TEXT_SOURCE_LANGUAGE_NAMES,
)
DESCRIPTION = """# SeamlessM4T
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models.
"""
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
TASK_NAMES = [
"S2ST (Speech to Speech translation)",
"S2TT (Speech to Text translation)",
"T2ST (Text to Speech translation)",
"T2TT (Text to Text translation)",
"ASR (Automatic Speech Recognition)",
]
AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
DEFAULT_TARGET_LANGUAGE = "French"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
translator = Translator(
model_name_or_card="seamlessM4T_large",
vocoder_name_or_card="vocoder_36langs",
device=device,
sample_rate=AUDIO_SAMPLE_RATE,
)
def predict(
task_name: str,
audio_source: str,
input_audio_mic: str | None,
input_audio_file: str | None,
input_text: str | None,
source_language: str | None,
target_language: str,
) -> tuple[tuple[int, np.ndarray] | None, str]:
task_name = task_name.split()[0]
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
if task_name in ["S2ST", "S2TT", "ASR"]:
if audio_source == "microphone":
input_data = input_audio_mic
else:
input_data = input_audio_file
arr, org_sr = torchaudio.load(input_data)
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
if new_arr.shape[1] > max_length:
new_arr = new_arr[:, :max_length]
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
else:
input_data = input_text
text_out, wav, sr = translator.predict(
input=input_data,
task_str=task_name,
tgt_lang=target_language_code,
src_lang=source_language_code,
ngram_filtering=True,
)
if task_name in ["S2ST", "T2ST"]:
return (sr, wav.cpu().detach().numpy()), text_out
else:
return None, text_out
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
return predict(
task_name="S2ST",
audio_source="file",
input_audio_mic=None,
input_audio_file=input_audio_file,
input_text=None,
source_language=None,
target_language=target_language,
)
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
return predict(
task_name="S2TT",
audio_source="file",
input_audio_mic=None,
input_audio_file=input_audio_file,
input_text=None,
source_language=None,
target_language=target_language,
)
def process_t2st_example(
input_text: str, source_language: str, target_language: str
) -> tuple[tuple[int, np.ndarray] | None, str]:
return predict(
task_name="T2ST",
audio_source="",
input_audio_mic=None,
input_audio_file=None,
input_text=input_text,
source_language=source_language,
target_language=target_language,
)
def process_t2tt_example(
input_text: str, source_language: str, target_language: str
) -> tuple[tuple[int, np.ndarray] | None, str]:
return predict(
task_name="T2TT",
audio_source="",
input_audio_mic=None,
input_audio_file=None,
input_text=input_text,
source_language=source_language,
target_language=target_language,
)
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
return predict(
task_name="ASR",
audio_source="file",
input_audio_mic=None,
input_audio_file=input_audio_file,
input_text=None,
source_language=None,
target_language=target_language,
)
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
mic = audio_source == "microphone"
return (
gr.update(visible=mic, value=None), # input_audio_mic
gr.update(visible=not mic, value=None), # input_audio_file
)
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
task_name = task_name.split()[0]
if task_name == "S2ST":
return (
gr.update(visible=True), # audio_box
gr.update(visible=False), # input_text
gr.update(visible=False), # source_language
gr.update(
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
), # target_language
)
elif task_name == "S2TT":
return (
gr.update(visible=True), # audio_box
gr.update(visible=False), # input_text
gr.update(visible=False), # source_language
gr.update(
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
), # target_language
)
elif task_name == "T2ST":
return (
gr.update(visible=False), # audio_box
gr.update(visible=True), # input_text
gr.update(visible=True), # source_language
gr.update(
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
), # target_language
)
elif task_name == "T2TT":
return (
gr.update(visible=False), # audio_box
gr.update(visible=True), # input_text
gr.update(visible=True), # source_language
gr.update(
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
), # target_language
)
elif task_name == "ASR":
return (
gr.update(visible=True), # audio_box
gr.update(visible=False), # input_text
gr.update(visible=False), # source_language
gr.update(
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
), # target_language
)
else:
raise ValueError(f"Unknown task: {task_name}")
def update_output_ui(task_name: str) -> tuple[dict, dict]:
task_name = task_name.split()[0]
if task_name in ["S2ST", "T2ST"]:
return (
gr.update(visible=True, value=None), # output_audio
gr.update(value=None), # output_text
)
elif task_name in ["S2TT", "T2TT", "ASR"]:
return (
gr.update(visible=False, value=None), # output_audio
gr.update(value=None), # output_text
)
else:
raise ValueError(f"Unknown task: {task_name}")
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
task_name = task_name.split()[0]
return (
gr.update(visible=task_name == "S2ST"), # s2st_example_row
gr.update(visible=task_name == "S2TT"), # s2tt_example_row
gr.update(visible=task_name == "T2ST"), # t2st_example_row
gr.update(visible=task_name == "T2TT"), # t2tt_example_row
gr.update(visible=task_name == "ASR"), # asr_example_row
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
task_name = gr.Dropdown(
label="Task",
choices=TASK_NAMES,
value=TASK_NAMES[0],
)
with gr.Row():
source_language = gr.Dropdown(
label="Source language",
choices=TEXT_SOURCE_LANGUAGE_NAMES,
value="English",
visible=False,
)
target_language = gr.Dropdown(
label="Target language",
choices=S2ST_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
with gr.Row() as audio_box:
audio_source = gr.Radio(
label="Audio source",
choices=["file", "microphone"],
value="file",
)
input_audio_mic = gr.Audio(
label="Input speech",
type="filepath",
source="microphone",
visible=False,
)
input_audio_file = gr.Audio(
label="Input speech",
type="filepath",
source="upload",
visible=True,
)
input_text = gr.Textbox(label="Input text", visible=False)
btn = gr.Button("Translate")
with gr.Column():
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
output_text = gr.Textbox(label="Translated text")
with gr.Row(visible=True) as s2st_example_row:
s2st_examples = gr.Examples(
examples=[
["assets/sample_input.mp3", "French"],
["assets/sample_input.mp3", "Mandarin Chinese"],
["assets/sample_input_2.mp3", "Hindi"],
["assets/sample_input_2.mp3", "Spanish"],
],
inputs=[input_audio_file, target_language],
outputs=[output_audio, output_text],
fn=process_s2st_example,
cache_examples=CACHE_EXAMPLES,
)
with gr.Row(visible=False) as s2tt_example_row:
s2tt_examples = gr.Examples(
examples=[
["assets/sample_input.mp3", "French"],
["assets/sample_input.mp3", "Mandarin Chinese"],
["assets/sample_input_2.mp3", "Hindi"],
["assets/sample_input_2.mp3", "Spanish"],
],
inputs=[input_audio_file, target_language],
outputs=[output_audio, output_text],
fn=process_s2tt_example,
cache_examples=CACHE_EXAMPLES,
)
with gr.Row(visible=False) as t2st_example_row:
t2st_examples = gr.Examples(
examples=[
["My favorite animal is the elephant.", "English", "French"],
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Hindi",
],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Spanish",
],
],
inputs=[input_text, source_language, target_language],
outputs=[output_audio, output_text],
fn=process_t2st_example,
cache_examples=CACHE_EXAMPLES,
)
with gr.Row(visible=False) as t2tt_example_row:
t2tt_examples = gr.Examples(
examples=[
["My favorite animal is the elephant.", "English", "French"],
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Hindi",
],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Spanish",
],
],
inputs=[input_text, source_language, target_language],
outputs=[output_audio, output_text],
fn=process_t2tt_example,
cache_examples=CACHE_EXAMPLES,
)
with gr.Row(visible=False) as asr_example_row:
asr_examples = gr.Examples(
examples=[
["assets/sample_input.mp3", "English"],
["assets/sample_input_2.mp3", "English"],
],
inputs=[input_audio_file, target_language],
outputs=[output_audio, output_text],
fn=process_asr_example,
cache_examples=CACHE_EXAMPLES,
)
audio_source.change(
fn=update_audio_ui,
inputs=audio_source,
outputs=[
input_audio_mic,
input_audio_file,
],
queue=False,
api_name=False,
)
task_name.change(
fn=update_input_ui,
inputs=task_name,
outputs=[
audio_box,
input_text,
source_language,
target_language,
],
queue=False,
api_name=False,
).then(
fn=update_output_ui,
inputs=task_name,
outputs=[output_audio, output_text],
queue=False,
api_name=False,
).then(
fn=update_example_ui,
inputs=task_name,
outputs=[
s2st_example_row,
s2tt_example_row,
t2st_example_row,
t2tt_example_row,
asr_example_row,
],
queue=False,
api_name=False,
)
btn.click(
fn=predict,
inputs=[
task_name,
audio_source,
input_audio_mic,
input_audio_file,
input_text,
source_language,
target_language,
],
outputs=[output_audio, output_text],
api_name="run",
)
demo.queue(max_size=50).launch()
# Linking models to the space
# 'facebook/seamless-m4t-large'
# 'facebook/SONAR'
|