File size: 1,330 Bytes
3d50426
5fc031d
3d50426
 
5fc031d
3d50426
8d99114
3d50426
 
 
8d99114
3d50426
 
751f371
3d50426
 
5fc031d
8d99114
3d50426
2634b87
3d50426
 
2634b87
3d50426
 
4181c5b
3d50426
 
 
 
 
093e96d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
os.system("pip install gradio==3.3")
import gradio as gr
import numpy as np
import streamlit as st

title = "Fairseq S2S"

description = "Gradio Demo for fairseq S2S: speech-to-speech translation models. To use it, simply add your audio, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.05604' target='_blank'>Direct speech-to-speech translation with discrete units</a> | <a href='https://github.com/facebookresearch/fairseq/tree/main/examples/speech_to_speech' target='_blank'>Github Repo</a></p>"

examples = [
  ["enhanced_direct_s2st_units_audios_es-en_set2_source_12478_cv.flac","xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022"],
]

io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022", api_key=st.secrets["api_key"])
   
def inference(text,model):
   outtext = io1(text)   
   return outtext 


gr.Interface(
    inference, 
    [gr.inputs.Audio(label="Input",type="filepath"),gr.inputs.Dropdown(choices=["xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022"], type="value", label="model")
],
    gr.outputs.Audio(label="Output"),
    article=article,
    title=title,
    examples=examples,
    description=description).queue().launch(share=True, cache_examples=False)