Spaces:
Runtime error
Runtime error
File size: 127,702 Bytes
4fbeb5c a01b289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
---
title: Hyenadna Sm 32k Mqtl Classifier Space
emoji: π
colorFrom: gray
colorTo: yellow
sdk: docker
pinned: false
license: creativeml-openrail-m
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
This is the log after fine-tuning for 18 hours. I ain't an expert yet. So first I'm gonna backup the log from the terminal
in this readme file.
```bash
huggingface-mqtl-classification-hyena-dna on ξ main [!] via π v3.10.12 (venv)
β― python app.py
.env file loaded successfully.
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /home/soumic/.cache/huggingface/token
Login successful
Logged in to Hugging Face Hub successfully.
INFO:root:api_key = '9eb6a2adfb2645afb39332d36aa7d3a80195e476'
wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
wandb: Currently logged in as: fahimfarhan (notredamians). Use `wandb login --relogin` to force relogin
wandb: WARNING If you're specifying your api key in code, ensure this code is not shared publicly.
wandb: WARNING Consider setting the WANDB_API_KEY environment variable, or running `wandb login` from the command line.
wandb: Appending key for api.wandb.ai to your netrc file: /home/soumic/.netrc
Logged in to wand db successfully.
INFO:accelerate.utils.modeling:We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set `max_memory` in to a higher value to use more memory (at your own risk).
Some weights of HyenaDNAForSequenceClassification were not initialized from the model checkpoint at LongSafari/hyenadna-small-32k-seqlen-hf and are newly initialized: ['score.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead
warnings.warn(
max_steps is given, it will override any value given in num_train_epochs
wandb: W&B API key is configured. Use `wandb login --relogin` to force relogin
wandb: Tracking run with wandb version 0.18.1
wandb: Run data is saved locally in /home/soumic/Codes/mqtl-classification/src/huggingface-mqtl-classification-hyena-dna/wandb/run-20241014_204712-09qzuf97
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run laptop_run_hyena_dna-mqtl_classification
wandb: βοΈ View project at https://wandb.ai/notredamians/huggingface
wandb: π View run at https://wandb.ai/notredamians/huggingface/runs/09qzuf97
0%| | 0/20000 [00:00<?, ?it/s]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
2%|β | 312/20000 [16:47<17:46:15, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
2%|β | 500/20000 [26:59<17:37:10, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6766, 'grad_norm': 1.1875, 'learning_rate': 0.0009719, 'epoch': 0.03}
{'eval_loss': 0.6609452962875366, 'eval_accuracy': 0.5925, 'eval_roc_auc': 0.6810560000000001, 'eval_precision': 0.7218225419664268, 'eval_recall': 0.301, 'eval_f1': 0.42484121383203954, 'eval_runtime': 40.0723, 'eval_samples_per_second': 49.91, 'eval_steps_per_second': 6.239, 'epoch': 0.03}
3%|β | 562/20000 [31:02<17:32:56, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
4%|ββ | 874/20000 [47:57<17:17:38, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
5%|ββ | 1000/20000 [54:48<17:07:49, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6563, 'grad_norm': 1.3359375, 'learning_rate': 0.0009438, 'epoch': 1.03}
{'eval_loss': 0.6419531106948853, 'eval_accuracy': 0.6285, 'eval_roc_auc': 0.6852790000000001, 'eval_precision': 0.6175663311985361, 'eval_recall': 0.675, 'eval_f1': 0.6450071667462972, 'eval_runtime': 40.1185, 'eval_samples_per_second': 49.852, 'eval_steps_per_second': 6.232, 'epoch': 1.03}
6%|ββ | 1124/20000 [1:02:14<17:03:06, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
7%|βββ | 1437/20000 [1:19:11<16:48:48, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
8%|βββ | 1500/20000 [1:22:37<16:45:38, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6453, 'grad_norm': 2.53125, 'learning_rate': 0.00091565, 'epoch': 2.03}
{'eval_loss': 0.6514531373977661, 'eval_accuracy': 0.635, 'eval_roc_auc': 0.6814979999999999, 'eval_precision': 0.6537585421412301, 'eval_recall': 0.574, 'eval_f1': 0.6112886048988285, 'eval_runtime': 40.428, 'eval_samples_per_second': 49.471, 'eval_steps_per_second': 6.184, 'epoch': 2.03}
8%|βββ | 1687/20000 [1:33:29<16:35:35, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
10%|ββββ | 1999/20000 [1:50:26<16:17:17, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
10%|ββββ | 2000/20000 [1:50:30<16:39:42, 3.33s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6446, 'grad_norm': 1.78125, 'learning_rate': 0.00088755, 'epoch': 3.03}
{'eval_loss': 0.6583672165870667, 'eval_accuracy': 0.6235, 'eval_roc_auc': 0.657044, 'eval_precision': 0.6063738156761412, 'eval_recall': 0.704, 'eval_f1': 0.6515502082369273, 'eval_runtime': 40.2026, 'eval_samples_per_second': 49.748, 'eval_steps_per_second': 6.218, 'epoch': 3.03}
11%|ββββ | 2249/20000 [2:04:43<16:01:21, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
12%|βββββ | 2500/20000 [2:18:17<15:50:05, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
13%|βββββ | 2562/20000 [2:21:39<15:46:56, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.639, 'grad_norm': 2.28125, 'learning_rate': 0.0008594000000000001, 'epoch': 4.03}
{'eval_loss': 0.6490234136581421, 'eval_accuracy': 0.6315, 'eval_roc_auc': 0.6770584999999999, 'eval_precision': 0.6285434995112414, 'eval_recall': 0.643, 'eval_f1': 0.6356895699456253, 'eval_runtime': 40.3791, 'eval_samples_per_second': 49.531, 'eval_steps_per_second': 6.191, 'epoch': 4.03}
14%|βββββ | 2812/20000 [2:35:56<15:33:06, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
15%|βββββ | 3000/20000 [2:46:07<15:21:46, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
16%|ββββββ | 3124/20000 [2:52:51<15:16:34, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6364, 'grad_norm': 2.21875, 'learning_rate': 0.0008313000000000001, 'epoch': 5.03}
{'eval_loss': 0.6497969031333923, 'eval_accuracy': 0.645, 'eval_roc_auc': 0.6795335, 'eval_precision': 0.6636568848758465, 'eval_recall': 0.588, 'eval_f1': 0.623541887592789, 'eval_runtime': 40.1064, 'eval_samples_per_second': 49.867, 'eval_steps_per_second': 6.233, 'epoch': 5.03}
17%|ββββββ | 3374/20000 [3:07:08<15:00:54, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
18%|ββββββ | 3500/20000 [3:13:56<14:54:33, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
18%|ββββββ | 3687/20000 [3:24:04<14:45:19, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6345, 'grad_norm': 2.5625, 'learning_rate': 0.0008031500000000001, 'epoch': 6.03}
{'eval_loss': 0.647531270980835, 'eval_accuracy': 0.6375, 'eval_roc_auc': 0.6821235000000001, 'eval_precision': 0.6619552414605419, 'eval_recall': 0.562, 'eval_f1': 0.6078961600865332, 'eval_runtime': 40.5432, 'eval_samples_per_second': 49.33, 'eval_steps_per_second': 6.166, 'epoch': 6.03}
20%|βββββββ | 3937/20000 [3:38:21<14:34:09, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
20%|βββββββ | 4000/20000 [3:41:46<14:29:32, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
21%|βββββββ | 4249/20000 [3:55:18<14:15:43, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6374, 'grad_norm': 1.5625, 'learning_rate': 0.00077505, 'epoch': 7.03}
{'eval_loss': 0.6538984179496765, 'eval_accuracy': 0.632, 'eval_roc_auc': 0.6728335, 'eval_precision': 0.6545667447306791, 'eval_recall': 0.559, 'eval_f1': 0.6030204962243797, 'eval_runtime': 40.4373, 'eval_samples_per_second': 49.459, 'eval_steps_per_second': 6.182, 'epoch': 7.03}
22%|ββββββββ | 4499/20000 [4:09:35<14:01:28, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
22%|ββββββββ | 4500/20000 [4:09:37<66:39:15, 15.48s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
24%|ββββββββ | 4812/20000 [4:26:33<13:44:03, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
25%|βββββββββ | 5000/20000 [4:36:45<13:33:37, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6332, 'grad_norm': 1.453125, 'learning_rate': 0.0007469, 'epoch': 8.03}
{'eval_loss': 0.6459375023841858, 'eval_accuracy': 0.6335, 'eval_roc_auc': 0.6818645000000001, 'eval_precision': 0.6606498194945848, 'eval_recall': 0.549, 'eval_f1': 0.5996723102129984, 'eval_runtime': 40.1761, 'eval_samples_per_second': 49.781, 'eval_steps_per_second': 6.223, 'epoch': 8.03}
25%|βββββββββ | 5062/20000 [4:40:48<13:30:16, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
27%|βββββββββ | 5374/20000 [4:57:43<13:12:38, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
28%|βββββββββ | 5500/20000 [5:04:33<13:06:11, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6337, 'grad_norm': 1.296875, 'learning_rate': 0.0007188, 'epoch': 9.03}
{'eval_loss': 0.6479921936988831, 'eval_accuracy': 0.6315, 'eval_roc_auc': 0.6773454999999999, 'eval_precision': 0.6394485683987274, 'eval_recall': 0.603, 'eval_f1': 0.6206896551724138, 'eval_runtime': 40.0385, 'eval_samples_per_second': 49.952, 'eval_steps_per_second': 6.244, 'epoch': 9.03}
28%|ββββββββββ | 5624/20000 [5:11:59<12:59:09, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
30%|ββββββββββ | 5937/20000 [5:28:55<12:42:12, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
30%|ββββββββββ | 6000/20000 [5:32:20<12:38:56, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6316, 'grad_norm': 1.546875, 'learning_rate': 0.00069065, 'epoch': 10.03}
{'eval_loss': 0.6446093916893005, 'eval_accuracy': 0.6365, 'eval_roc_auc': 0.6814725, 'eval_precision': 0.6463022508038585, 'eval_recall': 0.603, 'eval_f1': 0.6239006725297465, 'eval_runtime': 40.1401, 'eval_samples_per_second': 49.825, 'eval_steps_per_second': 6.228, 'epoch': 10.03}
31%|βββββββββββ | 6187/20000 [5:43:09<12:28:12, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
32%|βββββββββββ | 6499/20000 [6:00:03<12:11:07, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
32%|βββββββββββ | 6500/20000 [6:00:06<12:27:39, 3.32s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6321, 'grad_norm': 1.8828125, 'learning_rate': 0.00066255, 'epoch': 11.03}
{'eval_loss': 0.6490703225135803, 'eval_accuracy': 0.638, 'eval_roc_auc': 0.6788120000000001, 'eval_precision': 0.6682926829268293, 'eval_recall': 0.548, 'eval_f1': 0.6021978021978022, 'eval_runtime': 40.1625, 'eval_samples_per_second': 49.798, 'eval_steps_per_second': 6.225, 'epoch': 11.03}
34%|ββββββββββββ | 6749/20000 [6:14:18<11:58:43, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
35%|ββββββββββββ | 7000/20000 [6:27:53<11:44:05, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
35%|ββββββββββββ | 7062/20000 [6:31:15<11:40:39, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6302, 'grad_norm': 1.4765625, 'learning_rate': 0.0006344, 'epoch': 12.03}
{'eval_loss': 0.6459453105926514, 'eval_accuracy': 0.6415, 'eval_roc_auc': 0.6813699999999999, 'eval_precision': 0.6639629200463499, 'eval_recall': 0.573, 'eval_f1': 0.6151368760064412, 'eval_runtime': 40.2064, 'eval_samples_per_second': 49.743, 'eval_steps_per_second': 6.218, 'epoch': 12.03}
37%|ββββββββββββ | 7312/20000 [6:45:28<11:28:13, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
38%|βββββββββββββ | 7500/20000 [6:55:40<11:18:18, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
38%|βββββββββββββ | 7624/20000 [7:02:24<11:11:30, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6313, 'grad_norm': 2.15625, 'learning_rate': 0.0006062999999999999, 'epoch': 13.03}
{'eval_loss': 0.6467031240463257, 'eval_accuracy': 0.632, 'eval_roc_auc': 0.682105, 'eval_precision': 0.6586538461538461, 'eval_recall': 0.548, 'eval_f1': 0.5982532751091703, 'eval_runtime': 40.1557, 'eval_samples_per_second': 49.806, 'eval_steps_per_second': 6.226, 'epoch': 13.03}
39%|βββββββββββββ | 7874/20000 [7:16:40<10:57:30, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
40%|ββββββββββββββ | 8000/20000 [7:23:28<10:51:51, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
41%|ββββββββββββββ | 8187/20000 [7:33:37<10:42:01, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6285, 'grad_norm': 1.71875, 'learning_rate': 0.00057815, 'epoch': 14.03}
{'eval_loss': 0.647335946559906, 'eval_accuracy': 0.6335, 'eval_roc_auc': 0.6786475, 'eval_precision': 0.6539792387543253, 'eval_recall': 0.567, 'eval_f1': 0.6073915372254954, 'eval_runtime': 40.1999, 'eval_samples_per_second': 49.751, 'eval_steps_per_second': 6.219, 'epoch': 14.03}
42%|ββββββββββββββ | 8437/20000 [7:47:52<10:27:11, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
42%|ββββββββββββββ | 8500/20000 [7:51:17<10:23:14, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
44%|βββββββββββββββ | 8749/20000 [8:04:46<10:09:47, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6297, 'grad_norm': 1.96875, 'learning_rate': 0.0005500500000000001, 'epoch': 15.03}
{'eval_loss': 0.6463281512260437, 'eval_accuracy': 0.6265, 'eval_roc_auc': 0.6853465000000001, 'eval_precision': 0.6595208070617906, 'eval_recall': 0.523, 'eval_f1': 0.5833798103736754, 'eval_runtime': 40.142, 'eval_samples_per_second': 49.823, 'eval_steps_per_second': 6.228, 'epoch': 15.03}
45%|ββββββββββββββββ | 8999/20000 [8:19:01<9:56:02, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
45%|βββββββββββββββ | 9000/20000 [8:19:03<46:59:43, 15.38s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
47%|ββββββββββββββββ | 9311/20000 [8:35:54<9:40:01, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
48%|βββββββββββββββββ | 9500/20000 [8:46:09<9:29:21, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6293, 'grad_norm': 1.296875, 'learning_rate': 0.0005219500000000001, 'epoch': 16.03}
{'eval_loss': 0.6480234265327454, 'eval_accuracy': 0.6305, 'eval_roc_auc': 0.6804485, 'eval_precision': 0.660122699386503, 'eval_recall': 0.538, 'eval_f1': 0.5928374655647383, 'eval_runtime': 40.1318, 'eval_samples_per_second': 49.836, 'eval_steps_per_second': 6.229, 'epoch': 16.03}
48%|βββββββββββββββββ | 9561/20000 [8:50:11<9:25:56, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
49%|βββββββββββββββββ | 9874/20000 [9:07:07<9:09:02, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
50%|βββββββββββββββββ | 10000/20000 [9:13:57<9:02:19, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.627, 'grad_norm': 2.265625, 'learning_rate': 0.0004938000000000001, 'epoch': 17.03}
{'eval_loss': 0.6483984589576721, 'eval_accuracy': 0.6355, 'eval_roc_auc': 0.6856035, 'eval_precision': 0.6833558863328822, 'eval_recall': 0.505, 'eval_f1': 0.5807935595169638, 'eval_runtime': 40.13, 'eval_samples_per_second': 49.838, 'eval_steps_per_second': 6.23, 'epoch': 17.03}
51%|βββββββββββββββββ | 10124/20000 [9:21:22<8:56:14, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
52%|ββββββββββββββββββ | 10436/20000 [9:38:17<8:38:39, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
52%|ββββββββββββββββββ | 10500/20000 [9:41:46<8:34:54, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6275, 'grad_norm': 1.390625, 'learning_rate': 0.0004657, 'epoch': 18.03}
{'eval_loss': 0.6519452929496765, 'eval_accuracy': 0.6305, 'eval_roc_auc': 0.6805995, 'eval_precision': 0.6905109489051094, 'eval_recall': 0.473, 'eval_f1': 0.5614243323442136, 'eval_runtime': 40.2132, 'eval_samples_per_second': 49.735, 'eval_steps_per_second': 6.217, 'epoch': 18.03}
53%|ββββββββββββββββββ | 10686/20000 [9:52:34<8:25:15, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
55%|ββββββββββββββββββ | 10999/20000 [10:09:31<8:08:19, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
55%|ββββββββββββββββββ | 11000/20000 [10:09:34<8:19:01, 3.33s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6252, 'grad_norm': 3.34375, 'learning_rate': 0.00043755, 'epoch': 19.03}
{'eval_loss': 0.6541953086853027, 'eval_accuracy': 0.629, 'eval_roc_auc': 0.6794749999999998, 'eval_precision': 0.6827195467422096, 'eval_recall': 0.482, 'eval_f1': 0.5650644783118406, 'eval_runtime': 40.0556, 'eval_samples_per_second': 49.931, 'eval_steps_per_second': 6.241, 'epoch': 19.03}
56%|ββββββββββββββββββ | 11249/20000 [10:23:44<7:53:19, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
57%|βββββββββββββββββββ | 11500/20000 [10:37:17<7:39:27, 3.24s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
58%|βββββββββββββββββββ | 11561/20000 [10:40:36<7:37:39, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6261, 'grad_norm': 1.109375, 'learning_rate': 0.00040945, 'epoch': 20.03}
{'eval_loss': 0.6494452953338623, 'eval_accuracy': 0.627, 'eval_roc_auc': 0.682218, 'eval_precision': 0.6798866855524079, 'eval_recall': 0.48, 'eval_f1': 0.5627198124267292, 'eval_runtime': 40.2047, 'eval_samples_per_second': 49.745, 'eval_steps_per_second': 6.218, 'epoch': 20.03}
59%|βββββββββββββββββββ | 11811/20000 [10:54:52<7:24:27, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
60%|ββββββββββββββββββββ | 12000/20000 [11:05:04<7:13:33, 3.25s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
61%|ββββββββββββββββββββ | 12124/20000 [11:11:48<7:07:20, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6241, 'grad_norm': 3.203125, 'learning_rate': 0.0003813, 'epoch': 21.03}
{'eval_loss': 0.6481562256813049, 'eval_accuracy': 0.634, 'eval_roc_auc': 0.6827625000000002, 'eval_precision': 0.6744791666666666, 'eval_recall': 0.518, 'eval_f1': 0.5859728506787331, 'eval_runtime': 40.2872, 'eval_samples_per_second': 49.644, 'eval_steps_per_second': 6.205, 'epoch': 21.03}
62%|ββββββββββββββββββββ | 12374/20000 [11:26:04<6:53:48, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
62%|ββββββββββββββββββββ | 12500/20000 [11:32:54<6:47:35, 3.26s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
63%|βββββββββββββββββββββ | 12686/20000 [11:43:01<6:38:04, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6242, 'grad_norm': 2.28125, 'learning_rate': 0.0003532, 'epoch': 22.03}
{'eval_loss': 0.649734377861023, 'eval_accuracy': 0.6275, 'eval_roc_auc': 0.6792649999999999, 'eval_precision': 0.6768377253814147, 'eval_recall': 0.488, 'eval_f1': 0.5671121441022661, 'eval_runtime': 40.3914, 'eval_samples_per_second': 49.516, 'eval_steps_per_second': 6.189, 'epoch': 22.03}
65%|βββββββββββββββββββββ | 12936/20000 [11:57:21<6:24:52, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
65%|βββββββββββββββββββββ | 13000/20000 [12:00:48<6:21:27, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
66%|ββββββββββββββββββββββ | 13249/20000 [12:14:22<6:07:38, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6222, 'grad_norm': 2.34375, 'learning_rate': 0.00032505, 'epoch': 23.03}
{'eval_loss': 0.6509531140327454, 'eval_accuracy': 0.632, 'eval_roc_auc': 0.6766355, 'eval_precision': 0.6788617886178862, 'eval_recall': 0.501, 'eval_f1': 0.5765247410817032, 'eval_runtime': 40.5007, 'eval_samples_per_second': 49.382, 'eval_steps_per_second': 6.173, 'epoch': 23.03}
67%|ββββββββββββββββββββββ | 13499/20000 [12:28:40<5:54:09, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
68%|βββββββββββββββββββββ | 13500/20000 [12:28:43<28:00:10, 15.51s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
69%|ββββββββββββββββββββββ | 13811/20000 [12:45:39<5:37:10, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
70%|βββββββββββββββββββββββ | 14000/20000 [12:55:57<5:27:02, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6225, 'grad_norm': 2.546875, 'learning_rate': 0.00029695, 'epoch': 24.03}
{'eval_loss': 0.6520390510559082, 'eval_accuracy': 0.6295, 'eval_roc_auc': 0.6782395000000001, 'eval_precision': 0.6885007278020379, 'eval_recall': 0.473, 'eval_f1': 0.5607587433313574, 'eval_runtime': 40.4911, 'eval_samples_per_second': 49.394, 'eval_steps_per_second': 6.174, 'epoch': 24.03}
70%|βββββββββββββββββββββββ | 14061/20000 [13:00:00<5:23:30, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
72%|βββββββββββββββββββββββ | 14374/20000 [13:17:02<5:06:57, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
72%|ββββββββββββββββββββββββ | 14500/20000 [13:23:54<5:00:11, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6207, 'grad_norm': 2.859375, 'learning_rate': 0.0002688, 'epoch': 25.03}
{'eval_loss': 0.6483515501022339, 'eval_accuracy': 0.6285, 'eval_roc_auc': 0.6745335000000001, 'eval_precision': 0.6604244694132334, 'eval_recall': 0.529, 'eval_f1': 0.5874514158800667, 'eval_runtime': 40.521, 'eval_samples_per_second': 49.357, 'eval_steps_per_second': 6.17, 'epoch': 25.03}
73%|ββββββββββββββββββββββββ | 14624/20000 [13:31:22<4:53:21, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
75%|ββββββββββββββββββββββββ | 14936/20000 [13:48:24<4:36:21, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
75%|ββββββββββββββββββββββββ | 15000/20000 [13:51:53<4:32:50, 3.27s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6209, 'grad_norm': 2.625, 'learning_rate': 0.0002407, 'epoch': 26.03}
{'eval_loss': 0.6515390872955322, 'eval_accuracy': 0.622, 'eval_roc_auc': 0.677573, 'eval_precision': 0.6713483146067416, 'eval_recall': 0.478, 'eval_f1': 0.5584112149532711, 'eval_runtime': 40.6973, 'eval_samples_per_second': 49.143, 'eval_steps_per_second': 6.143, 'epoch': 26.03}
76%|βββββββββββββββββββββββββ | 15186/20000 [14:02:46<4:23:02, 3.28s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
77%|βββββββββββββββββββββββββ | 15499/20000 [14:19:48<4:05:49, 3.28s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
78%|βββββββββββββββββββββββββ | 15500/20000 [14:19:52<4:11:34, 3.35s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6186, 'grad_norm': 3.5625, 'learning_rate': 0.00021255, 'epoch': 27.03}
{'eval_loss': 0.6510000228881836, 'eval_accuracy': 0.6215, 'eval_roc_auc': 0.6764669999999999, 'eval_precision': 0.6613545816733067, 'eval_recall': 0.498, 'eval_f1': 0.5681688533941814, 'eval_runtime': 40.7851, 'eval_samples_per_second': 49.038, 'eval_steps_per_second': 6.13, 'epoch': 27.03}
79%|ββββββββββββββββββββββββββ | 15749/20000 [14:34:10<3:52:32, 3.28s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
80%|ββββββββββββββββββββββββββ | 16000/20000 [14:47:54<3:39:14, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
80%|ββββββββββββββββββββββββββ | 16061/20000 [14:51:15<3:35:40, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6187, 'grad_norm': 3.3125, 'learning_rate': 0.00018445, 'epoch': 28.03}
{'eval_loss': 0.6518672108650208, 'eval_accuracy': 0.622, 'eval_roc_auc': 0.6765534999999999, 'eval_precision': 0.6635388739946381, 'eval_recall': 0.495, 'eval_f1': 0.5670103092783505, 'eval_runtime': 40.841, 'eval_samples_per_second': 48.97, 'eval_steps_per_second': 6.121, 'epoch': 28.03}
82%|ββββββββββββββββββββββββββ | 16311/20000 [15:05:40<3:22:08, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
82%|βββββββββββββββββββββββββββ | 16500/20000 [15:15:59<3:11:49, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
83%|βββββββββββββββββββββββββββ | 16624/20000 [15:22:47<3:04:59, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6168, 'grad_norm': 4.75, 'learning_rate': 0.0001563, 'epoch': 29.03}
{'eval_loss': 0.6528280973434448, 'eval_accuracy': 0.6225, 'eval_roc_auc': 0.674847, 'eval_precision': 0.6639892904953146, 'eval_recall': 0.496, 'eval_f1': 0.5678305666857469, 'eval_runtime': 40.8188, 'eval_samples_per_second': 48.997, 'eval_steps_per_second': 6.125, 'epoch': 29.03}
84%|βββββββββββββββββββββββββββ | 16874/20000 [15:37:11<2:51:19, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
85%|ββββββββββββββββββββββββββββ | 17000/20000 [15:44:05<2:44:29, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
86%|ββββββββββββββββββββββββββββ | 17186/20000 [15:54:17<2:34:17, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.617, 'grad_norm': 3.40625, 'learning_rate': 0.0001282, 'epoch': 30.03}
{'eval_loss': 0.6515468955039978, 'eval_accuracy': 0.6255, 'eval_roc_auc': 0.6761704999999999, 'eval_precision': 0.6640522875816993, 'eval_recall': 0.508, 'eval_f1': 0.5756373937677054, 'eval_runtime': 40.8487, 'eval_samples_per_second': 48.961, 'eval_steps_per_second': 6.12, 'epoch': 30.03}
87%|ββββββββββββββββββββββββββββ | 17436/20000 [16:08:42<2:20:42, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
88%|ββββββββββββββββββββββββββββ | 17500/20000 [16:12:11<2:17:02, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
89%|βββββββββββββββββββββββββββββ | 17748/20000 [16:25:48<2:03:38, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6153, 'grad_norm': 3.5, 'learning_rate': 0.00010005, 'epoch': 31.03}
{'eval_loss': 0.6516093611717224, 'eval_accuracy': 0.625, 'eval_roc_auc': 0.675067, 'eval_precision': 0.6619170984455959, 'eval_recall': 0.511, 'eval_f1': 0.5767494356659142, 'eval_runtime': 40.8897, 'eval_samples_per_second': 48.912, 'eval_steps_per_second': 6.114, 'epoch': 31.03}
90%|βββββββββββββββββββββββββββββ | 17999/20000 [16:40:15<1:49:50, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
90%|βββββββββββββββββββββββββββββ | 18000/20000 [16:40:19<8:41:40, 15.65s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
92%|ββββββββββββββββββββββββββββββ | 18311/20000 [16:57:23<1:32:40, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
92%|ββββββββββββββββββββββββββββββ | 18500/20000 [17:07:45<1:22:23, 3.30s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6157, 'grad_norm': 5.03125, 'learning_rate': 7.195e-05, 'epoch': 32.03}
{'eval_loss': 0.6506797075271606, 'eval_accuracy': 0.6255, 'eval_roc_auc': 0.67511, 'eval_precision': 0.6590621039290241, 'eval_recall': 0.52, 'eval_f1': 0.5813303521520402, 'eval_runtime': 40.9702, 'eval_samples_per_second': 48.816, 'eval_steps_per_second': 6.102, 'epoch': 32.03}
93%|ββββββββββββββββββββββββββββββ | 18561/20000 [17:11:49<1:18:54, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
94%|βββββββββββββββββββββββββββββββ | 18873/20000 [17:28:54<1:01:49, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
95%|βββββββββββββββββββββββββββββββββ | 19000/20000 [17:35:52<54:53, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6152, 'grad_norm': 3.046875, 'learning_rate': 4.385e-05, 'epoch': 33.03}
{'eval_loss': 0.650265634059906, 'eval_accuracy': 0.6235, 'eval_roc_auc': 0.6751385, 'eval_precision': 0.6549560853199499, 'eval_recall': 0.522, 'eval_f1': 0.5809682804674458, 'eval_runtime': 40.9015, 'eval_samples_per_second': 48.898, 'eval_steps_per_second': 6.112, 'epoch': 33.03}
96%|βββββββββββββββββββββββββββββββββ | 19123/20000 [17:43:21<48:07, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
97%|βββββββββββββββββββββββββββββββββ | 19436/20000 [18:00:29<30:56, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
98%|ββββββββββββββββββββββββββββββββββ| 19500/20000 [18:04:00<27:26, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6138, 'grad_norm': 6.0, 'learning_rate': 1.57e-05, 'epoch': 34.03}
{'eval_loss': 0.6503046751022339, 'eval_accuracy': 0.625, 'eval_roc_auc': 0.6752875, 'eval_precision': 0.656641604010025, 'eval_recall': 0.524, 'eval_f1': 0.5828698553948832, 'eval_runtime': 40.8155, 'eval_samples_per_second': 49.001, 'eval_steps_per_second': 6.125, 'epoch': 34.03}
98%|ββββββββββββββββββββββββββββββββββ| 19686/20000 [18:14:55<17:14, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
100%|ββββββββββββββββββββββββββββββββββ| 19998/20000 [18:32:01<00:06, 3.29s/it]/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
{'loss': 0.6132, 'grad_norm': 4.0, 'learning_rate': 0.0, 'epoch': 35.02}
{'eval_loss': 0.6502890586853027, 'eval_accuracy': 0.6245, 'eval_roc_auc': 0.6752564999999999, 'eval_precision': 0.655819774718398, 'eval_recall': 0.524, 'eval_f1': 0.5825458588104503, 'eval_runtime': 40.8202, 'eval_samples_per_second': 48.995, 'eval_steps_per_second': 6.124, 'epoch': 35.02}
{'train_runtime': 66770.9915, 'train_samples_per_second': 9.585, 'train_steps_per_second': 0.3, 'train_loss': 0.628925074005127, 'epoch': 35.02}
100%|ββββββββββββββββββββββββββββββββββ| 20000/20000 [18:32:49<00:00, 3.34s/it]
result = TrainOutput(global_step=20000, training_loss=0.628925074005127, metrics={'train_runtime': 66770.9915, 'train_samples_per_second': 9.585, 'train_steps_per_second': 0.3, 'total_flos': 5.030096633856e+16, 'train_loss': 0.628925074005127, 'epoch': 35.0156796875})
test_results = {'eval_loss': 0.6681622266769409, 'eval_accuracy': 0.6058029014507254, 'eval_roc_auc': 0.6498473473473474, 'eval_precision': 0.6168327796234773, 'eval_recall': 0.5575575575575575, 'eval_f1': 0.5856992639327024, 'eval_runtime': 40.8408, 'eval_samples_per_second': 48.946, 'eval_steps_per_second': 6.121, 'epoch': 35.0156796875}
pytorch_model.bin: 100%|βββββββββββββββββββ| 8.17M/8.17M [00:03<00:00, 2.28MB/s]
wandb: π View run laptop_run_hyena_dna-mqtl_classification at: https://wandb.ai/notredamians/huggingface/runs/09qzuf97
wandb: Find logs at: wandb/run-20241014_204712-09qzuf97/logs
WARNING:urllib3.connectionpool:Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7e61f8599900>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/4504800232407040/envelope/
WARNING:urllib3.connectionpool:Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7e61f8599ab0>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/4504800232407040/envelope/
WARNING:urllib3.connectionpool:Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7e61f8599c60>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/4504800232407040/envelope/
WARNING:urllib3.connectionpool:Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7e61f859bac0>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/4504800232407040/envelope/
WARNING:urllib3.connectionpool:Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7e61f859bca0>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/4504800232407040/envelope/
WARNING:urllib3.connectionpool:Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7e61f859beb0>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/4504800232407040/envelope/
``` |