Spaces:
Runtime error
Runtime error
File size: 12,601 Bytes
a491ee5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
from typing import Any
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
from torch.utils.data import DataLoader, Dataset
from torcheval.metrics import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
import torch
from torch import nn
from datasets import load_dataset
black = "\u001b[30m"
red = "\u001b[31m"
green = "\u001b[32m"
yellow = "\u001b[33m"
blue = "\u001b[34m"
magenta = "\u001b[35m"
cyan = "\u001b[36m"
white = "\u001b[37m"
FORWARD = "FORWARD_INPUT"
BACKWARD = "BACKWARD_INPUT"
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
class CommonAttentionLayer(nn.Module):
def __init__(self, hidden_size, *args, **kwargs):
super().__init__(*args, **kwargs)
self.attention_linear = nn.Linear(hidden_size, 1)
pass
def forward(self, hidden_states):
# Apply linear layer
attn_weights = self.attention_linear(hidden_states)
# Apply softmax to get attention scores
attn_weights = torch.softmax(attn_weights, dim=1)
# Apply attention weights to hidden states
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
return context_vector, attn_weights
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
def forward(self, input, target):
return super().forward(input.squeeze(), target.float())
class MQtlDnaBERT6Classifier(nn.Module):
def __init__(self,
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
hidden_size=768,
num_classes=1,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.model_name = "MQtlDnaBERT6Classifier"
self.bert_model = bert_model
self.attention = CommonAttentionLayer(hidden_size)
self.classifier = nn.Linear(hidden_size, num_classes)
pass
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
"""
# torch.Size([128, 1, 512]) --> [128, 512]
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
# torch.Size([16, 1, 512]) --> [16, 512]
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
"""
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
last_hidden_state = bert_output.last_hidden_state
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
y = self.classifier(context_vector)
return y
class TorchMetrics:
def __init__(self):
self.binary_accuracy = BinaryAccuracy() #.to(device)
self.binary_auc = BinaryAUROC() # .to(device)
self.binary_f1_score = BinaryF1Score() # .to(device)
self.binary_precision = BinaryPrecision() # .to(device)
self.binary_recall = BinaryRecall() # .to(device)
pass
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
# it looks like the library maintainers changed preds to input, ie, before: preds, now: input
self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
pass
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
b_accuracy = self.binary_accuracy.compute()
b_auc = self.binary_auc.compute()
b_f1_score = self.binary_f1_score.compute()
b_precision = self.binary_precision.compute()
b_recall = self.binary_recall.compute()
# timber.info( log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
log(f"{log_prefix}_accuracy", b_accuracy)
log(f"{log_prefix}_auc", b_auc)
log(f"{log_prefix}_f1_score", b_f1_score)
log(f"{log_prefix}_precision", b_precision)
log(f"{log_prefix}_recall", b_recall)
self.binary_accuracy.reset()
self.binary_auc.reset()
self.binary_f1_score.reset()
self.binary_precision.reset()
self.binary_recall.reset()
pass
class MQtlBertClassifierLightningModule(LightningModule):
def __init__(self,
classifier: nn.Module,
criterion=None, # nn.BCEWithLogitsLoss(),
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
l1_lambda=0.001,
l2_wright_decay=0.001,
*args: Any,
**kwargs: Any):
super().__init__(*args, **kwargs)
self.classifier = classifier
self.criterion = criterion
self.train_metrics = TorchMetrics()
self.validate_metrics = TorchMetrics()
self.test_metrics = TorchMetrics()
self.regularization = regularization
self.l1_lambda = l1_lambda
self.l2_weight_decay = l2_wright_decay
pass
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
input_ids: torch.tensor = x["input_ids"]
attention_mask: torch.tensor = x["attention_mask"]
token_type_ids: torch.tensor = x["token_type_ids"]
# print(f"\n{ type(input_ids) = }, {input_ids = }")
# print(f"{ type(attention_mask) = }, { attention_mask = }")
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
def configure_optimizers(self) -> OptimizerLRScheduler:
# Here we add weight decay (L2 regularization) to the optimizer
weight_decay = 0.0
if self.regularization == 2 or self.regularization == 3:
weight_decay = self.l2_weight_decay
return torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on training batch data
x, y = batch
preds = self.forward(x)
loss = self.criterion(preds, y)
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
l1_norm = sum(p.abs().sum() for p in self.parameters())
loss += self.l1_lambda * l1_norm
self.log("train_loss", loss)
# calculate the scores start
self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
# calculate the scores end
return loss
def on_train_epoch_end(self) -> None:
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
pass
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on validation batch data
# print(f"debug { batch = }")
x, y = batch
preds = self.forward(x)
loss = 0 # self.criterion(preds, y)
self.log("valid_loss", loss)
# calculate the scores start
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
# calculate the scores end
return loss
def on_validation_epoch_end(self) -> None:
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
return None
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# Accuracy on validation batch data
x, y = batch
preds = self.forward(x)
loss = self.criterion(preds, y)
self.log("test_loss", loss) # do we need this?
# calculate the scores start
self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
# calculate the scores end
return loss
def on_test_epoch_end(self) -> None:
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
return None
pass
class DNABERTDataset(Dataset):
def __init__(self, dataset, tokenizer, max_length=512):
self.dataset = dataset
self.bert_tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sequence = self.dataset[idx]['sequence'] # Fetch the 'sequence' column
label = self.dataset[idx]['label'] # Fetch the 'label' column (or whatever target you use)
# Tokenize the sequence
encoded_sequence: BatchEncoding = self.bert_tokenizer(
sequence,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_tensors='pt'
)
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
return encoded_sequence_squeezed, label
class DNABERTDataModule(LightningDataModule):
def __init__(self, model_name=DNA_BERT_6, batch_size=8):
super().__init__()
self.tokenized_dataset = None
self.dataset = None
self.train_dataset: DNABERTDataset = None
self.validate_dataset: DNABERTDataset = None
self.test_dataset: DNABERTDataset = None
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
self.batch_size = batch_size
def prepare_data(self):
# Download and prepare dataset
self.dataset = load_dataset("fahimfarhan/mqtl-classification-dataset-binned-200")
def setup(self, stage=None):
self.train_dataset = DNABERTDataset(self.dataset['train'], self.tokenizer)
self.validate_dataset = DNABERTDataset(self.dataset['validate'], self.tokenizer)
self.test_dataset = DNABERTDataset(self.dataset['test'], self.tokenizer)
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=15)
def val_dataloader(self):
return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=15)
def test_dataloader(self) -> EVAL_DATALOADERS:
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=15)
# Initialize DataModule
model_name = "zhihan1996/DNABERT-6"
data_module = DNABERTDataModule(model_name=model_name, batch_size=8)
def start_bert(classifier_model, model_save_path, criterion, WINDOW=200, batch_size=4,
dataset_folder_prefix="inputdata/", is_binned=True, is_debug=False, max_epochs=10):
file_suffix = ""
if is_binned:
file_suffix = "_binned"
data_module = DNABERTDataModule(batch_size=batch_size)
# classifier_model = classifier_model.to(DEVICE)
classifier_module = MQtlBertClassifierLightningModule(
classifier=classifier_model,
regularization=2, criterion=criterion)
# if os.path.exists(model_save_path):
# classifier_module.load_state_dict(torch.load(model_save_path))
classifier_module = classifier_module # .double()
# Set up training arguments
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy="epoch",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=max_epochs,
logging_dir='./logs',
report_to="none", # Disable reporting to WandB, etc.
)
# Prepare data using the DataModule
data_module.prepare_data()
data_module.setup()
# Initialize Trainer
# trainer = Trainer(
# model=classifier_module,
# args=training_args,
# train_dataset=data_module.tokenized_dataset["train"],
# eval_dataset=data_module.tokenized_dataset["test"],
# )
trainer = Trainer(max_epochs=max_epochs, precision="32")
# Train the model
trainer.fit(model=classifier_module, datamodule=data_module)
trainer.test(model=classifier_module, datamodule=data_module)
torch.save(classifier_module.state_dict(), model_save_path)
classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")
pass
if __name__ == "__main__":
dataset_folder_prefix = "inputdata/"
pytorch_model = MQtlDnaBERT6Classifier()
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
criterion=ReshapedBCEWithLogitsLoss(), WINDOW=200, batch_size=4,
dataset_folder_prefix=dataset_folder_prefix, max_epochs=2)
pass
|