Spaces:
Runtime error
Runtime error
Soumic
commited on
Commit
•
31eb488
1
Parent(s):
f70ddaf
:hammer_and_pick: Move old code to app_v2.py, and rewrite app.py just like hyenadna finetune
Browse files
app.py
CHANGED
@@ -1,24 +1,20 @@
|
|
1 |
-
import logging
|
2 |
import os
|
3 |
import random
|
4 |
-
from typing import Any
|
5 |
|
|
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
-
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
9 |
-
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
|
10 |
-
from torch.nn.utils.rnn import pad_sequence
|
11 |
-
from torch.utils.data import DataLoader, Dataset
|
12 |
-
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
13 |
-
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
14 |
-
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
15 |
-
import torch
|
16 |
-
from torch import nn
|
17 |
-
from datasets import load_dataset, IterableDataset
|
18 |
-
from huggingface_hub import PyTorchModelHubMixin
|
19 |
-
|
20 |
from dotenv import load_dotenv
|
21 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
timber = logging.getLogger()
|
24 |
# logging.basicConfig(level=logging.DEBUG)
|
@@ -38,121 +34,7 @@ BACKWARD = "BACKWARD_INPUT"
|
|
38 |
|
39 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
|
41 |
-
|
42 |
-
def login_inside_huggingface_virtualmachine():
|
43 |
-
# Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
|
44 |
-
try:
|
45 |
-
load_dotenv() # Only useful on your laptop if .env exists
|
46 |
-
print(".env file loaded successfully.")
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Warning: Could not load .env file. Exception: {e}")
|
49 |
-
|
50 |
-
# Try to get the token from environment variables
|
51 |
-
try:
|
52 |
-
token = os.getenv("HF_TOKEN")
|
53 |
-
|
54 |
-
if not token:
|
55 |
-
raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")
|
56 |
-
|
57 |
-
# Log in to Hugging Face Hub
|
58 |
-
login(token)
|
59 |
-
print("Logged in to Hugging Face Hub successfully.")
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Error during Hugging Face login: {e}")
|
63 |
-
# Handle the error appropriately (e.g., exit or retry)
|
64 |
-
|
65 |
-
|
66 |
-
def one_hot_e(dna_seq: str) -> np.ndarray:
|
67 |
-
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
68 |
-
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
69 |
-
'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
|
70 |
-
'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
71 |
-
'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
72 |
-
'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}
|
73 |
-
|
74 |
-
size_of_a_seq: int = len(dna_seq)
|
75 |
-
|
76 |
-
# forward = np.zeros(shape=(size_of_a_seq, 4))
|
77 |
-
|
78 |
-
forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
|
79 |
-
encoded = np.asarray(forward_list)
|
80 |
-
encoded_transposed = encoded.transpose() # todo: Needs review
|
81 |
-
return encoded_transposed
|
82 |
-
|
83 |
-
|
84 |
-
def one_hot_e_column(column: pd.Series) -> np.ndarray:
|
85 |
-
tmp_list: list = [one_hot_e(seq) for seq in column]
|
86 |
-
encoded_column = np.asarray(tmp_list).astype(np.float32)
|
87 |
-
return encoded_column
|
88 |
-
|
89 |
-
|
90 |
-
def reverse_dna_seq(dna_seq: str) -> str:
|
91 |
-
# m_reversed = ""
|
92 |
-
# for i in range(0, len(dna_seq)):
|
93 |
-
# m_reversed = dna_seq[i] + m_reversed
|
94 |
-
# return m_reversed
|
95 |
-
return dna_seq[::-1]
|
96 |
-
|
97 |
-
|
98 |
-
def complement_dna_seq(dna_seq: str) -> str:
|
99 |
-
comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
|
100 |
-
"a": "t", "c": "g", "t": "a", "g": "c",
|
101 |
-
"N": "N", "H": "H", "-": "-",
|
102 |
-
"n": "n", "h": "h"
|
103 |
-
}
|
104 |
-
|
105 |
-
comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
|
106 |
-
comp_dna_seq: str = "".join(comp_dna_seq_list)
|
107 |
-
return comp_dna_seq
|
108 |
-
|
109 |
-
|
110 |
-
def reverse_complement_dna_seq(dna_seq: str) -> str:
|
111 |
-
return reverse_dna_seq(complement_dna_seq(dna_seq))
|
112 |
-
|
113 |
-
|
114 |
-
def reverse_complement_column(column: pd.Series) -> np.ndarray:
|
115 |
-
rc_column: list = [reverse_complement_dna_seq(seq) for seq in column]
|
116 |
-
return rc_column
|
117 |
-
|
118 |
-
|
119 |
-
class TorchMetrics:
|
120 |
-
def __init__(self, device=DEVICE):
|
121 |
-
self.binary_accuracy = BinaryAccuracy().to(device)
|
122 |
-
self.binary_auc = BinaryAUROC().to(device)
|
123 |
-
self.binary_f1_score = BinaryF1Score().to(device)
|
124 |
-
self.binary_precision = BinaryPrecision().to(device)
|
125 |
-
self.binary_recall = BinaryRecall().to(device)
|
126 |
-
pass
|
127 |
-
|
128 |
-
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
129 |
-
self.binary_accuracy.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
130 |
-
self.binary_auc.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
131 |
-
self.binary_f1_score.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
132 |
-
self.binary_precision.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
133 |
-
self.binary_recall.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
134 |
-
pass
|
135 |
-
|
136 |
-
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
|
137 |
-
b_accuracy = self.binary_accuracy.compute()
|
138 |
-
b_auc = self.binary_auc.compute()
|
139 |
-
b_f1_score = self.binary_f1_score.compute()
|
140 |
-
b_precision = self.binary_precision.compute()
|
141 |
-
b_recall = self.binary_recall.compute()
|
142 |
-
timber.info(
|
143 |
-
log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
|
144 |
-
log(f"{log_prefix}_accuracy", b_accuracy)
|
145 |
-
log(f"{log_prefix}_auc", b_auc)
|
146 |
-
log(f"{log_prefix}_f1_score", b_f1_score)
|
147 |
-
log(f"{log_prefix}_precision", b_precision)
|
148 |
-
log(f"{log_prefix}_recall", b_recall)
|
149 |
-
|
150 |
-
self.binary_accuracy.reset()
|
151 |
-
self.binary_auc.reset()
|
152 |
-
self.binary_f1_score.reset()
|
153 |
-
self.binary_precision.reset()
|
154 |
-
self.binary_recall.reset()
|
155 |
-
pass
|
156 |
|
157 |
|
158 |
def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
|
@@ -194,16 +76,12 @@ class PagingMQTLDataset(IterableDataset):
|
|
194 |
label = row['label'] # Fetch the 'label' column (or whatever target you use)
|
195 |
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
|
196 |
sequence = insert_debug_motif_at_random_position(seq=sequence, DEBUG_MOTIF=self.debug_motif)
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
return_tensors='pt'
|
204 |
-
)
|
205 |
-
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
|
206 |
-
return encoded_sequence_squeezed, label
|
207 |
|
208 |
|
209 |
class MqtlDataModule(LightningDataModule):
|
@@ -244,173 +122,17 @@ class MqtlDataModule(LightningDataModule):
|
|
244 |
return self.test_loader
|
245 |
|
246 |
|
247 |
-
|
248 |
-
def __init__(self,
|
249 |
-
classifier: nn.Module,
|
250 |
-
criterion=None, # nn.BCEWithLogitsLoss(),
|
251 |
-
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
|
252 |
-
l1_lambda=0.001,
|
253 |
-
l2_wright_decay=0.001,
|
254 |
-
*args: Any,
|
255 |
-
**kwargs: Any):
|
256 |
-
super().__init__(*args, **kwargs)
|
257 |
-
self.classifier = classifier
|
258 |
-
self.criterion = criterion
|
259 |
-
self.train_metrics = TorchMetrics()
|
260 |
-
self.validate_metrics = TorchMetrics()
|
261 |
-
self.test_metrics = TorchMetrics()
|
262 |
-
|
263 |
-
self.regularization = regularization
|
264 |
-
self.l1_lambda = l1_lambda
|
265 |
-
self.l2_weight_decay = l2_wright_decay
|
266 |
-
pass
|
267 |
-
|
268 |
-
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
|
269 |
-
input_ids: torch.tensor = x["input_ids"]
|
270 |
-
attention_mask: torch.tensor = x["attention_mask"]
|
271 |
-
token_type_ids: torch.tensor = x["token_type_ids"]
|
272 |
-
# print(f"\n{ type(input_ids) = }, {input_ids = }")
|
273 |
-
# print(f"{ type(attention_mask) = }, { attention_mask = }")
|
274 |
-
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
|
275 |
-
|
276 |
-
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
|
277 |
-
|
278 |
-
def configure_optimizers(self) -> OptimizerLRScheduler:
|
279 |
-
# Here we add weight decay (L2 regularization) to the optimizer
|
280 |
-
weight_decay = 0.0
|
281 |
-
if self.regularization == 2 or self.regularization == 3:
|
282 |
-
weight_decay = self.l2_weight_decay
|
283 |
-
return torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
|
284 |
-
|
285 |
-
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
286 |
-
# Accuracy on training batch data
|
287 |
-
x, y = batch
|
288 |
-
preds = self.forward(x)
|
289 |
-
loss = self.criterion(preds, y)
|
290 |
-
|
291 |
-
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
|
292 |
-
l1_norm = sum(p.abs().sum() for p in self.parameters())
|
293 |
-
loss += self.l1_lambda * l1_norm
|
294 |
-
|
295 |
-
self.log("train_loss", loss)
|
296 |
-
# calculate the scores start
|
297 |
-
self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
298 |
-
# calculate the scores end
|
299 |
-
return loss
|
300 |
-
|
301 |
-
def on_train_epoch_end(self) -> None:
|
302 |
-
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
|
303 |
-
pass
|
304 |
-
|
305 |
-
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
306 |
-
# Accuracy on validation batch data
|
307 |
-
# print(f"debug { batch = }")
|
308 |
-
x, y = batch
|
309 |
-
preds = self.forward(x)
|
310 |
-
loss = self.criterion(preds, y)
|
311 |
-
self.log("valid_loss", loss)
|
312 |
-
# calculate the scores start
|
313 |
-
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
314 |
-
# calculate the scores end
|
315 |
-
return loss
|
316 |
-
|
317 |
-
def on_validation_epoch_end(self) -> None:
|
318 |
-
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
|
319 |
-
return None
|
320 |
-
|
321 |
-
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
322 |
-
# Accuracy on validation batch data
|
323 |
-
x, y = batch
|
324 |
-
preds = self.forward(x)
|
325 |
-
loss = self.criterion(preds, y)
|
326 |
-
self.log("test_loss", loss) # do we need this?
|
327 |
-
# calculate the scores start
|
328 |
-
self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
329 |
-
# calculate the scores end
|
330 |
-
return loss
|
331 |
-
|
332 |
-
def on_test_epoch_end(self) -> None:
|
333 |
-
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
|
334 |
-
return None
|
335 |
-
|
336 |
-
pass
|
337 |
-
|
338 |
-
|
339 |
-
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
|
340 |
-
|
341 |
-
|
342 |
-
class CommonAttentionLayer(nn.Module):
|
343 |
-
def __init__(self, hidden_size, *args, **kwargs):
|
344 |
-
super().__init__(*args, **kwargs)
|
345 |
-
self.attention_linear = nn.Linear(hidden_size, 1)
|
346 |
-
pass
|
347 |
-
|
348 |
-
def forward(self, hidden_states):
|
349 |
-
# Apply linear layer
|
350 |
-
attn_weights = self.attention_linear(hidden_states)
|
351 |
-
# Apply softmax to get attention scores
|
352 |
-
attn_weights = torch.softmax(attn_weights, dim=1)
|
353 |
-
# Apply attention weights to hidden states
|
354 |
-
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
355 |
-
return context_vector, attn_weights
|
356 |
-
|
357 |
-
|
358 |
-
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
|
359 |
-
def forward(self, input, target):
|
360 |
-
return super().forward(input.squeeze(), target.float())
|
361 |
-
|
362 |
-
|
363 |
-
class DnaBert6MQTLClassifier(nn.Module, PyTorchModelHubMixin):
|
364 |
-
def __init__(self,
|
365 |
-
seq_len: int, model_repository_name: str,
|
366 |
-
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
367 |
-
hidden_size=768,
|
368 |
-
num_classes=1,
|
369 |
-
*args,
|
370 |
-
**kwargs
|
371 |
-
):
|
372 |
-
super().__init__(*args, **kwargs)
|
373 |
-
self.seq_len = seq_len
|
374 |
-
self.model_repository_name = model_repository_name
|
375 |
-
|
376 |
-
self.model_name = "MQtlDnaBERT6Classifier"
|
377 |
-
|
378 |
-
self.bert_model = bert_model
|
379 |
-
self.attention = CommonAttentionLayer(hidden_size)
|
380 |
-
self.classifier = nn.Linear(hidden_size, num_classes)
|
381 |
-
pass
|
382 |
-
|
383 |
-
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
|
384 |
-
"""
|
385 |
-
# torch.Size([128, 1, 512]) --> [128, 512]
|
386 |
-
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
|
387 |
-
# torch.Size([16, 1, 512]) --> [16, 512]
|
388 |
-
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
|
389 |
-
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
|
390 |
-
"""
|
391 |
-
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
|
392 |
-
input_ids=input_ids,
|
393 |
-
attention_mask=attention_mask,
|
394 |
-
token_type_ids=token_type_ids
|
395 |
-
)
|
396 |
-
|
397 |
-
last_hidden_state = bert_output.last_hidden_state
|
398 |
-
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
|
399 |
-
y = self.classifier(context_vector)
|
400 |
-
return y
|
401 |
-
|
402 |
-
|
403 |
-
def start_bert(classifier_model, criterion, m_optimizer=torch.optim.Adam, WINDOW=200,
|
404 |
-
is_binned=True, is_debug=False, max_epochs=10, batch_size=8):
|
405 |
-
file_suffix = ""
|
406 |
-
if is_binned:
|
407 |
-
file_suffix = "_binned"
|
408 |
-
|
409 |
data_files = {
|
410 |
# small samples
|
411 |
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
|
412 |
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
|
413 |
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
|
|
|
|
|
|
|
|
|
|
|
414 |
# large samples
|
415 |
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
|
416 |
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
|
@@ -418,14 +140,12 @@ def start_bert(classifier_model, criterion, m_optimizer=torch.optim.Adam, WINDOW
|
|
418 |
}
|
419 |
|
420 |
dataset_map = None
|
421 |
-
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/
|
422 |
if is_my_laptop:
|
423 |
dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
|
424 |
else:
|
425 |
dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)
|
426 |
|
427 |
-
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
|
428 |
-
|
429 |
train_dataset = PagingMQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
|
430 |
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
431 |
tokenizer=tokenizer,
|
@@ -439,66 +159,179 @@ def start_bert(classifier_model, criterion, m_optimizer=torch.optim.Adam, WINDOW
|
|
439 |
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
440 |
tokenizer=tokenizer,
|
441 |
seq_len=WINDOW)
|
|
|
|
|
442 |
|
443 |
-
data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset, batch_size=batch_size)
|
444 |
|
445 |
-
|
|
|
446 |
try:
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
classifier_module = MQtlBertClassifierLightningModule(
|
452 |
-
classifier=classifier_model,
|
453 |
-
regularization=2, criterion=criterion)
|
454 |
|
455 |
-
#
|
456 |
-
|
|
|
457 |
|
458 |
-
|
|
|
459 |
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
trainer.test(model=classifier_module, datamodule=data_module)
|
464 |
-
timber.info("\n\n")
|
465 |
-
# torch.save(classifier_module.state_dict(), model_save_path) # deprecated, use classifier_model.save_pretrained(model_subdirectory) instead
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
|
471 |
-
#
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
|
479 |
-
commit_message=commit_message # f":tada: Push model for window size {WINDOW}"
|
480 |
-
)
|
481 |
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
|
|
|
|
|
486 |
pass
|
487 |
|
488 |
|
489 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
login_inside_huggingface_virtualmachine()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
pass
|
|
|
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
|
4 |
+
import huggingface_hub
|
5 |
import numpy as np
|
6 |
+
from datasets import load_dataset, Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
+
from pytorch_lightning import LightningDataModule
|
9 |
+
from pytorch_lightning.utilities.types import TRAIN_DATALOADERS, EVAL_DATALOADERS
|
10 |
+
from torch.utils.data import DataLoader, IterableDataset
|
11 |
+
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score
|
12 |
+
# from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
13 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel, BertModel
|
14 |
+
from transformers import TrainingArguments, Trainer
|
15 |
+
import torch
|
16 |
+
import logging
|
17 |
+
import wandb
|
18 |
|
19 |
timber = logging.getLogger()
|
20 |
# logging.basicConfig(level=logging.DEBUG)
|
|
|
34 |
|
35 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
|
37 |
+
PRETRAINED_MODEL_NAME: str = "zhihan1996/DNA_bert_6"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
|
|
|
76 |
label = row['label'] # Fetch the 'label' column (or whatever target you use)
|
77 |
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
|
78 |
sequence = insert_debug_motif_at_random_position(seq=sequence, DEBUG_MOTIF=self.debug_motif)
|
79 |
+
|
80 |
+
input_ids = self.bert_tokenizer(sequence)["input_ids"]
|
81 |
+
tokenized_tensor = torch.tensor(input_ids)
|
82 |
+
label_tensor = torch.tensor(label)
|
83 |
+
output_dict = {"input_ids": tokenized_tensor, "labels": label_tensor} # so this is now you do it?
|
84 |
+
return output_dict # tokenized_tensor, label_tensor
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
class MqtlDataModule(LightningDataModule):
|
|
|
122 |
return self.test_loader
|
123 |
|
124 |
|
125 |
+
def create_paging_train_val_test_datasets(tokenizer, WINDOW, is_debug, batch_size=1000):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
data_files = {
|
127 |
# small samples
|
128 |
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
|
129 |
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
|
130 |
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
|
131 |
+
# medium samples
|
132 |
+
"train_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_train_binned.csv",
|
133 |
+
"validate_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_validate_binned.csv",
|
134 |
+
"test_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_test_binned.csv",
|
135 |
+
|
136 |
# large samples
|
137 |
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
|
138 |
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
|
|
|
140 |
}
|
141 |
|
142 |
dataset_map = None
|
143 |
+
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
|
144 |
if is_my_laptop:
|
145 |
dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
|
146 |
else:
|
147 |
dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)
|
148 |
|
|
|
|
|
149 |
train_dataset = PagingMQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
|
150 |
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
151 |
tokenizer=tokenizer,
|
|
|
159 |
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
160 |
tokenizer=tokenizer,
|
161 |
seq_len=WINDOW)
|
162 |
+
# data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset, batch_size=batch_size)
|
163 |
+
return train_dataset, val_dataset, test_dataset
|
164 |
|
|
|
165 |
|
166 |
+
def login_inside_huggingface_virtualmachine():
|
167 |
+
# Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
|
168 |
try:
|
169 |
+
load_dotenv() # Only useful on your laptop if .env exists
|
170 |
+
print(".env file loaded successfully.")
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Warning: Could not load .env file. Exception: {e}")
|
|
|
|
|
|
|
173 |
|
174 |
+
# Try to get the token from environment variables
|
175 |
+
try:
|
176 |
+
token = os.getenv("HF_TOKEN")
|
177 |
|
178 |
+
if not token:
|
179 |
+
raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")
|
180 |
|
181 |
+
# Log in to Hugging Face Hub
|
182 |
+
huggingface_hub.login(token)
|
183 |
+
print("Logged in to Hugging Face Hub successfully.")
|
|
|
|
|
|
|
184 |
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error during Hugging Face login: {e}")
|
187 |
+
# Handle the error appropriately (e.g., exit or retry)
|
188 |
|
189 |
+
# wand db login
|
190 |
+
try:
|
191 |
+
api_key = os.getenv("WAND_DB_API_KEY")
|
192 |
+
timber.info(f"{api_key = }")
|
193 |
|
194 |
+
if not api_key:
|
195 |
+
raise ValueError("WAND_DB_API_KEY not found. Make sure to set it in the environment variables or .env file.")
|
|
|
|
|
|
|
196 |
|
197 |
+
# Log in to Hugging Face Hub
|
198 |
+
wandb.login(key=api_key)
|
199 |
+
print("Logged in to wand db successfully.")
|
200 |
|
201 |
+
except Exception as e:
|
202 |
+
print(f"Error during wand db Face login: {e}")
|
203 |
pass
|
204 |
|
205 |
|
206 |
+
# use sklearn cz torchmetrics.classification gave array index out of bound exception :/ (whatever it is called in python)
|
207 |
+
def compute_metrics_using_sklearn(p):
|
208 |
+
try:
|
209 |
+
pred, labels = p
|
210 |
+
|
211 |
+
# Get predicted class labels
|
212 |
+
pred_labels = np.argmax(pred, axis=1)
|
213 |
+
|
214 |
+
# Get predicted probabilities for the positive class
|
215 |
+
pred_probs = pred[:, 1] # Assuming binary classification and 2 output classes
|
216 |
+
|
217 |
+
accuracy = accuracy_score(y_true=labels, y_pred=pred_labels)
|
218 |
+
recall = recall_score(y_true=labels, y_pred=pred_labels)
|
219 |
+
precision = precision_score(y_true=labels, y_pred=pred_labels)
|
220 |
+
f1 = f1_score(y_true=labels, y_pred=pred_labels)
|
221 |
+
roc_auc = roc_auc_score(y_true=labels, y_score=pred_probs)
|
222 |
+
|
223 |
+
return {"accuracy": accuracy, "roc_auc": roc_auc, "precision": precision, "recall": recall, "f1": f1}
|
224 |
+
|
225 |
+
except Exception as x:
|
226 |
+
print(f"compute_metrics_using_sklearn failed with exception: {x}")
|
227 |
+
return {"accuracy": 0, "roc_auc": 0, "precision": 0, "recall": 0, "f1": 0}
|
228 |
+
|
229 |
+
|
230 |
+
def start():
|
231 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
232 |
+
|
233 |
login_inside_huggingface_virtualmachine()
|
234 |
+
WINDOW = 4000
|
235 |
+
batch_size = 100
|
236 |
+
model_local_directory = f"my-awesome-model-{WINDOW}"
|
237 |
+
model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
|
238 |
+
|
239 |
+
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
|
240 |
+
|
241 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME, trust_remote_code=True)
|
242 |
+
classifier_model = AutoModelForSequenceClassification.from_pretrained(PRETRAINED_MODEL_NAME, num_labels=2)
|
243 |
+
args = {
|
244 |
+
"output_dir": "output_dnabert-6-mqtl_classification",
|
245 |
+
"num_train_epochs": 1,
|
246 |
+
"max_steps": 100, # train 36k + val 4k = 40k
|
247 |
+
# Set the number of steps you expect to train, originally 1000, takes too much time. So I set it to 10 to run faster and check my code/pipeline
|
248 |
+
"run_name": "laptop_run_dna-bert-6-mqtl_classification", # Override run_name here
|
249 |
+
"per_device_train_batch_size": 1,
|
250 |
+
"gradient_accumulation_steps": 32,
|
251 |
+
"gradient_checkpointing": True,
|
252 |
+
"learning_rate": 1e-3,
|
253 |
+
"save_safetensors": False, # I added it. this solves the runtime error!
|
254 |
+
# not sure if it is a good idea. sklearn may slow down training, causing time loss... if so, disable these 2 lines below
|
255 |
+
"evaluation_strategy": "epoch", # To calculate metrics per epoch
|
256 |
+
"logging_strategy": "epoch" # Extra: to log training data stats for loss
|
257 |
+
}
|
258 |
|
259 |
+
training_args = TrainingArguments(**args)
|
260 |
+
# train_dataset, eval_dataset, test_dataset = create_data_module(tokenizer=tokenizer, WINDOW=WINDOW,
|
261 |
+
# batch_size=batch_size,
|
262 |
+
# is_debug=False)
|
263 |
+
""" # example code
|
264 |
+
max_length = 32_000
|
265 |
+
sequence = 'ACTG' * int(max_length / 4)
|
266 |
+
# sequence = 'ACTG' * int(1000) # seq_len = 4000 it works!
|
267 |
+
sequence = [sequence] * 8 # Create 8 identical samples
|
268 |
+
tokenized = tokenizer(sequence)["input_ids"]
|
269 |
+
labels = [0, 1] * 4
|
270 |
+
|
271 |
+
# Create a dataset for training
|
272 |
+
run_the_code_ds = Dataset.from_dict({"input_ids": tokenized, "labels": labels})
|
273 |
+
run_the_code_ds.set_format("pt")
|
274 |
+
"""
|
275 |
+
|
276 |
+
train_ds, val_ds, test_ds = create_paging_train_val_test_datasets(tokenizer, WINDOW=WINDOW, is_debug=False)
|
277 |
+
# train_ds, val_ds, test_ds = run_the_code_ds, run_the_code_ds, run_the_code_ds
|
278 |
+
# train_ds.set_format("pt") # doesn't work!
|
279 |
+
|
280 |
+
trainer = Trainer(
|
281 |
+
model=classifier_model,
|
282 |
+
args=training_args,
|
283 |
+
train_dataset=train_ds,
|
284 |
+
eval_dataset=val_ds,
|
285 |
+
compute_metrics=compute_metrics_using_sklearn # torch_metrics.compute_metrics
|
286 |
)
|
287 |
+
# train, and validate
|
288 |
+
result = trainer.train()
|
289 |
+
try:
|
290 |
+
print(f"{result = }")
|
291 |
+
except Exception as x:
|
292 |
+
print(f"{x = }")
|
293 |
+
|
294 |
+
# testing
|
295 |
+
try:
|
296 |
+
# with torch.no_grad(): # didn't work :/
|
297 |
+
test_results = trainer.evaluate(eval_dataset=test_ds)
|
298 |
+
print(f"{test_results = }")
|
299 |
+
except Exception as oome:
|
300 |
+
print(f"{oome = }")
|
301 |
+
finally:
|
302 |
+
# save the model
|
303 |
+
model_name = "DnaBert6MQtlClassifier"
|
304 |
+
|
305 |
+
classifier_model.save_pretrained(save_directory=model_local_directory, safe_serialization=False)
|
306 |
+
|
307 |
+
# push to the hub
|
308 |
+
commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
|
309 |
+
if is_my_laptop:
|
310 |
+
commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"
|
311 |
+
|
312 |
+
classifier_model.push_to_hub(
|
313 |
+
repo_id=model_remote_repository,
|
314 |
+
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
|
315 |
+
commit_message=commit_message, # f":tada: Push model for window size {WINDOW}"
|
316 |
+
safe_serialization=False
|
317 |
+
)
|
318 |
+
pass
|
319 |
+
|
320 |
+
|
321 |
+
def interprete_demo():
|
322 |
+
is_my_laptop = True
|
323 |
+
WINDOW = 4000
|
324 |
+
batch_size = 100
|
325 |
+
model_local_directory = f"my-awesome-model-{WINDOW}"
|
326 |
+
model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
|
327 |
+
|
328 |
+
try:
|
329 |
+
classifier_model = AutoModel.from_pretrained(model_remote_repository)
|
330 |
+
# todo: use captum / gentech-grelu to interpret the model
|
331 |
+
except Exception as x:
|
332 |
+
print(x)
|
333 |
+
|
334 |
+
|
335 |
+
if __name__ == '__main__':
|
336 |
+
start()
|
337 |
pass
|
app_v2.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
9 |
+
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
|
10 |
+
from torch.nn.utils.rnn import pad_sequence
|
11 |
+
from torch.utils.data import DataLoader, Dataset
|
12 |
+
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
13 |
+
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from datasets import load_dataset, IterableDataset
|
18 |
+
from huggingface_hub import PyTorchModelHubMixin
|
19 |
+
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
from huggingface_hub import login
|
22 |
+
|
23 |
+
timber = logging.getLogger()
|
24 |
+
# logging.basicConfig(level=logging.DEBUG)
|
25 |
+
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
26 |
+
|
27 |
+
black = "\u001b[30m"
|
28 |
+
red = "\u001b[31m"
|
29 |
+
green = "\u001b[32m"
|
30 |
+
yellow = "\u001b[33m"
|
31 |
+
blue = "\u001b[34m"
|
32 |
+
magenta = "\u001b[35m"
|
33 |
+
cyan = "\u001b[36m"
|
34 |
+
white = "\u001b[37m"
|
35 |
+
|
36 |
+
FORWARD = "FORWARD_INPUT"
|
37 |
+
BACKWARD = "BACKWARD_INPUT"
|
38 |
+
|
39 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
|
41 |
+
|
42 |
+
def login_inside_huggingface_virtualmachine():
|
43 |
+
# Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
|
44 |
+
try:
|
45 |
+
load_dotenv() # Only useful on your laptop if .env exists
|
46 |
+
print(".env file loaded successfully.")
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Warning: Could not load .env file. Exception: {e}")
|
49 |
+
|
50 |
+
# Try to get the token from environment variables
|
51 |
+
try:
|
52 |
+
token = os.getenv("HF_TOKEN")
|
53 |
+
|
54 |
+
if not token:
|
55 |
+
raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")
|
56 |
+
|
57 |
+
# Log in to Hugging Face Hub
|
58 |
+
login(token)
|
59 |
+
print("Logged in to Hugging Face Hub successfully.")
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error during Hugging Face login: {e}")
|
63 |
+
# Handle the error appropriately (e.g., exit or retry)
|
64 |
+
|
65 |
+
|
66 |
+
def one_hot_e(dna_seq: str) -> np.ndarray:
|
67 |
+
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
68 |
+
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
69 |
+
'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
|
70 |
+
'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
71 |
+
'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
72 |
+
'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}
|
73 |
+
|
74 |
+
size_of_a_seq: int = len(dna_seq)
|
75 |
+
|
76 |
+
# forward = np.zeros(shape=(size_of_a_seq, 4))
|
77 |
+
|
78 |
+
forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
|
79 |
+
encoded = np.asarray(forward_list)
|
80 |
+
encoded_transposed = encoded.transpose() # todo: Needs review
|
81 |
+
return encoded_transposed
|
82 |
+
|
83 |
+
|
84 |
+
def one_hot_e_column(column: pd.Series) -> np.ndarray:
|
85 |
+
tmp_list: list = [one_hot_e(seq) for seq in column]
|
86 |
+
encoded_column = np.asarray(tmp_list).astype(np.float32)
|
87 |
+
return encoded_column
|
88 |
+
|
89 |
+
|
90 |
+
def reverse_dna_seq(dna_seq: str) -> str:
|
91 |
+
# m_reversed = ""
|
92 |
+
# for i in range(0, len(dna_seq)):
|
93 |
+
# m_reversed = dna_seq[i] + m_reversed
|
94 |
+
# return m_reversed
|
95 |
+
return dna_seq[::-1]
|
96 |
+
|
97 |
+
|
98 |
+
def complement_dna_seq(dna_seq: str) -> str:
|
99 |
+
comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
|
100 |
+
"a": "t", "c": "g", "t": "a", "g": "c",
|
101 |
+
"N": "N", "H": "H", "-": "-",
|
102 |
+
"n": "n", "h": "h"
|
103 |
+
}
|
104 |
+
|
105 |
+
comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
|
106 |
+
comp_dna_seq: str = "".join(comp_dna_seq_list)
|
107 |
+
return comp_dna_seq
|
108 |
+
|
109 |
+
|
110 |
+
def reverse_complement_dna_seq(dna_seq: str) -> str:
|
111 |
+
return reverse_dna_seq(complement_dna_seq(dna_seq))
|
112 |
+
|
113 |
+
|
114 |
+
def reverse_complement_column(column: pd.Series) -> np.ndarray:
|
115 |
+
rc_column: list = [reverse_complement_dna_seq(seq) for seq in column]
|
116 |
+
return rc_column
|
117 |
+
|
118 |
+
|
119 |
+
class TorchMetrics:
|
120 |
+
def __init__(self, device=DEVICE):
|
121 |
+
self.binary_accuracy = BinaryAccuracy().to(device)
|
122 |
+
self.binary_auc = BinaryAUROC().to(device)
|
123 |
+
self.binary_f1_score = BinaryF1Score().to(device)
|
124 |
+
self.binary_precision = BinaryPrecision().to(device)
|
125 |
+
self.binary_recall = BinaryRecall().to(device)
|
126 |
+
pass
|
127 |
+
|
128 |
+
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
129 |
+
self.binary_accuracy.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
130 |
+
self.binary_auc.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
131 |
+
self.binary_f1_score.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
132 |
+
self.binary_precision.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
133 |
+
self.binary_recall.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
134 |
+
pass
|
135 |
+
|
136 |
+
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
|
137 |
+
b_accuracy = self.binary_accuracy.compute()
|
138 |
+
b_auc = self.binary_auc.compute()
|
139 |
+
b_f1_score = self.binary_f1_score.compute()
|
140 |
+
b_precision = self.binary_precision.compute()
|
141 |
+
b_recall = self.binary_recall.compute()
|
142 |
+
timber.info(
|
143 |
+
log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
|
144 |
+
log(f"{log_prefix}_accuracy", b_accuracy)
|
145 |
+
log(f"{log_prefix}_auc", b_auc)
|
146 |
+
log(f"{log_prefix}_f1_score", b_f1_score)
|
147 |
+
log(f"{log_prefix}_precision", b_precision)
|
148 |
+
log(f"{log_prefix}_recall", b_recall)
|
149 |
+
|
150 |
+
self.binary_accuracy.reset()
|
151 |
+
self.binary_auc.reset()
|
152 |
+
self.binary_f1_score.reset()
|
153 |
+
self.binary_precision.reset()
|
154 |
+
self.binary_recall.reset()
|
155 |
+
pass
|
156 |
+
|
157 |
+
|
158 |
+
def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
|
159 |
+
start = 0
|
160 |
+
end = len(seq)
|
161 |
+
rand_pos = random.randrange(start, (end - len(DEBUG_MOTIF)))
|
162 |
+
random_end = rand_pos + len(DEBUG_MOTIF)
|
163 |
+
output = seq[start: rand_pos] + DEBUG_MOTIF + seq[random_end: end]
|
164 |
+
assert len(seq) == len(output)
|
165 |
+
return output
|
166 |
+
|
167 |
+
|
168 |
+
class PagingMQTLDataset(IterableDataset):
|
169 |
+
def __init__(self,
|
170 |
+
m_dataset,
|
171 |
+
seq_len,
|
172 |
+
tokenizer,
|
173 |
+
max_length=512,
|
174 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=False):
|
175 |
+
self.dataset = m_dataset
|
176 |
+
self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
|
177 |
+
self.debug_motif = "ATCGCCTA"
|
178 |
+
self.seq_len = seq_len
|
179 |
+
|
180 |
+
self.bert_tokenizer = tokenizer
|
181 |
+
self.max_length = max_length
|
182 |
+
pass
|
183 |
+
|
184 |
+
def __iter__(self):
|
185 |
+
for row in self.dataset:
|
186 |
+
processed = self.preprocess(row)
|
187 |
+
if processed is not None:
|
188 |
+
yield processed
|
189 |
+
|
190 |
+
def preprocess(self, row):
|
191 |
+
sequence = row['sequence'] # Fetch the 'sequence' column
|
192 |
+
if len(sequence) != self.seq_len:
|
193 |
+
return None # skip problematic row!
|
194 |
+
label = row['label'] # Fetch the 'label' column (or whatever target you use)
|
195 |
+
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
|
196 |
+
sequence = insert_debug_motif_at_random_position(seq=sequence, DEBUG_MOTIF=self.debug_motif)
|
197 |
+
# Tokenize the sequence
|
198 |
+
encoded_sequence: BatchEncoding = self.bert_tokenizer(
|
199 |
+
sequence,
|
200 |
+
truncation=True,
|
201 |
+
padding='max_length',
|
202 |
+
max_length=self.max_length,
|
203 |
+
return_tensors='pt'
|
204 |
+
)
|
205 |
+
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
|
206 |
+
return encoded_sequence_squeezed, label
|
207 |
+
|
208 |
+
|
209 |
+
class MqtlDataModule(LightningDataModule):
|
210 |
+
def __init__(self, train_ds, val_ds, test_ds, batch_size=16):
|
211 |
+
super().__init__()
|
212 |
+
self.batch_size = batch_size
|
213 |
+
self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=False,
|
214 |
+
# collate_fn=collate_fn,
|
215 |
+
num_workers=1,
|
216 |
+
# persistent_workers=True
|
217 |
+
)
|
218 |
+
self.validate_loader = DataLoader(val_ds, batch_size=self.batch_size, shuffle=False,
|
219 |
+
# collate_fn=collate_fn,
|
220 |
+
num_workers=1,
|
221 |
+
# persistent_workers=True
|
222 |
+
)
|
223 |
+
self.test_loader = DataLoader(test_ds, batch_size=self.batch_size, shuffle=False,
|
224 |
+
# collate_fn=collate_fn,
|
225 |
+
num_workers=1,
|
226 |
+
# persistent_workers=True
|
227 |
+
)
|
228 |
+
pass
|
229 |
+
|
230 |
+
def prepare_data(self):
|
231 |
+
pass
|
232 |
+
|
233 |
+
def setup(self, stage: str) -> None:
|
234 |
+
timber.info(f"inside setup: {stage = }")
|
235 |
+
pass
|
236 |
+
|
237 |
+
def train_dataloader(self) -> TRAIN_DATALOADERS:
|
238 |
+
return self.train_loader
|
239 |
+
|
240 |
+
def val_dataloader(self) -> EVAL_DATALOADERS:
|
241 |
+
return self.validate_loader
|
242 |
+
|
243 |
+
def test_dataloader(self) -> EVAL_DATALOADERS:
|
244 |
+
return self.test_loader
|
245 |
+
|
246 |
+
|
247 |
+
class MQtlBertClassifierLightningModule(LightningModule):
|
248 |
+
def __init__(self,
|
249 |
+
classifier: nn.Module,
|
250 |
+
criterion=None, # nn.BCEWithLogitsLoss(),
|
251 |
+
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
|
252 |
+
l1_lambda=0.001,
|
253 |
+
l2_wright_decay=0.001,
|
254 |
+
*args: Any,
|
255 |
+
**kwargs: Any):
|
256 |
+
super().__init__(*args, **kwargs)
|
257 |
+
self.classifier = classifier
|
258 |
+
self.criterion = criterion
|
259 |
+
self.train_metrics = TorchMetrics()
|
260 |
+
self.validate_metrics = TorchMetrics()
|
261 |
+
self.test_metrics = TorchMetrics()
|
262 |
+
|
263 |
+
self.regularization = regularization
|
264 |
+
self.l1_lambda = l1_lambda
|
265 |
+
self.l2_weight_decay = l2_wright_decay
|
266 |
+
pass
|
267 |
+
|
268 |
+
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
|
269 |
+
input_ids: torch.tensor = x["input_ids"]
|
270 |
+
attention_mask: torch.tensor = x["attention_mask"]
|
271 |
+
token_type_ids: torch.tensor = x["token_type_ids"]
|
272 |
+
# print(f"\n{ type(input_ids) = }, {input_ids = }")
|
273 |
+
# print(f"{ type(attention_mask) = }, { attention_mask = }")
|
274 |
+
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
|
275 |
+
|
276 |
+
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
|
277 |
+
|
278 |
+
def configure_optimizers(self) -> OptimizerLRScheduler:
|
279 |
+
# Here we add weight decay (L2 regularization) to the optimizer
|
280 |
+
weight_decay = 0.0
|
281 |
+
if self.regularization == 2 or self.regularization == 3:
|
282 |
+
weight_decay = self.l2_weight_decay
|
283 |
+
return torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
|
284 |
+
|
285 |
+
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
286 |
+
# Accuracy on training batch data
|
287 |
+
x, y = batch
|
288 |
+
preds = self.forward(x)
|
289 |
+
loss = self.criterion(preds, y)
|
290 |
+
|
291 |
+
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
|
292 |
+
l1_norm = sum(p.abs().sum() for p in self.parameters())
|
293 |
+
loss += self.l1_lambda * l1_norm
|
294 |
+
|
295 |
+
self.log("train_loss", loss)
|
296 |
+
# calculate the scores start
|
297 |
+
self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
298 |
+
# calculate the scores end
|
299 |
+
return loss
|
300 |
+
|
301 |
+
def on_train_epoch_end(self) -> None:
|
302 |
+
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
|
303 |
+
pass
|
304 |
+
|
305 |
+
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
306 |
+
# Accuracy on validation batch data
|
307 |
+
# print(f"debug { batch = }")
|
308 |
+
x, y = batch
|
309 |
+
preds = self.forward(x)
|
310 |
+
loss = self.criterion(preds, y)
|
311 |
+
self.log("valid_loss", loss)
|
312 |
+
# calculate the scores start
|
313 |
+
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
314 |
+
# calculate the scores end
|
315 |
+
return loss
|
316 |
+
|
317 |
+
def on_validation_epoch_end(self) -> None:
|
318 |
+
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
|
319 |
+
return None
|
320 |
+
|
321 |
+
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
322 |
+
# Accuracy on validation batch data
|
323 |
+
x, y = batch
|
324 |
+
preds = self.forward(x)
|
325 |
+
loss = self.criterion(preds, y)
|
326 |
+
self.log("test_loss", loss) # do we need this?
|
327 |
+
# calculate the scores start
|
328 |
+
self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
329 |
+
# calculate the scores end
|
330 |
+
return loss
|
331 |
+
|
332 |
+
def on_test_epoch_end(self) -> None:
|
333 |
+
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
|
334 |
+
return None
|
335 |
+
|
336 |
+
pass
|
337 |
+
|
338 |
+
|
339 |
+
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
|
340 |
+
|
341 |
+
|
342 |
+
class CommonAttentionLayer(nn.Module):
|
343 |
+
def __init__(self, hidden_size, *args, **kwargs):
|
344 |
+
super().__init__(*args, **kwargs)
|
345 |
+
self.attention_linear = nn.Linear(hidden_size, 1)
|
346 |
+
pass
|
347 |
+
|
348 |
+
def forward(self, hidden_states):
|
349 |
+
# Apply linear layer
|
350 |
+
attn_weights = self.attention_linear(hidden_states)
|
351 |
+
# Apply softmax to get attention scores
|
352 |
+
attn_weights = torch.softmax(attn_weights, dim=1)
|
353 |
+
# Apply attention weights to hidden states
|
354 |
+
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
355 |
+
return context_vector, attn_weights
|
356 |
+
|
357 |
+
|
358 |
+
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
|
359 |
+
def forward(self, input, target):
|
360 |
+
return super().forward(input.squeeze(), target.float())
|
361 |
+
|
362 |
+
|
363 |
+
class DnaBert6MQTLClassifier(nn.Module, PyTorchModelHubMixin):
|
364 |
+
def __init__(self,
|
365 |
+
seq_len: int, model_repository_name: str,
|
366 |
+
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
367 |
+
hidden_size=768,
|
368 |
+
num_classes=1,
|
369 |
+
*args,
|
370 |
+
**kwargs
|
371 |
+
):
|
372 |
+
super().__init__(*args, **kwargs)
|
373 |
+
self.seq_len = seq_len
|
374 |
+
self.model_repository_name = model_repository_name
|
375 |
+
|
376 |
+
self.model_name = "MQtlDnaBERT6Classifier"
|
377 |
+
|
378 |
+
self.bert_model = bert_model
|
379 |
+
self.attention = CommonAttentionLayer(hidden_size)
|
380 |
+
self.classifier = nn.Linear(hidden_size, num_classes)
|
381 |
+
pass
|
382 |
+
|
383 |
+
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
|
384 |
+
"""
|
385 |
+
# torch.Size([128, 1, 512]) --> [128, 512]
|
386 |
+
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
|
387 |
+
# torch.Size([16, 1, 512]) --> [16, 512]
|
388 |
+
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
|
389 |
+
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
|
390 |
+
"""
|
391 |
+
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
|
392 |
+
input_ids=input_ids,
|
393 |
+
attention_mask=attention_mask,
|
394 |
+
token_type_ids=token_type_ids
|
395 |
+
)
|
396 |
+
|
397 |
+
last_hidden_state = bert_output.last_hidden_state
|
398 |
+
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
|
399 |
+
y = self.classifier(context_vector)
|
400 |
+
return y
|
401 |
+
|
402 |
+
|
403 |
+
def start_bert(classifier_model, criterion, m_optimizer=torch.optim.Adam, WINDOW=200,
|
404 |
+
is_binned=True, is_debug=False, max_epochs=10, batch_size=8):
|
405 |
+
file_suffix = ""
|
406 |
+
if is_binned:
|
407 |
+
file_suffix = "_binned"
|
408 |
+
|
409 |
+
data_files = {
|
410 |
+
# small samples
|
411 |
+
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
|
412 |
+
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
|
413 |
+
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
|
414 |
+
# large samples
|
415 |
+
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
|
416 |
+
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
|
417 |
+
"test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
|
418 |
+
}
|
419 |
+
|
420 |
+
dataset_map = None
|
421 |
+
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv")
|
422 |
+
if is_my_laptop:
|
423 |
+
dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
|
424 |
+
else:
|
425 |
+
dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)
|
426 |
+
|
427 |
+
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
|
428 |
+
|
429 |
+
train_dataset = PagingMQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
|
430 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
431 |
+
tokenizer=tokenizer,
|
432 |
+
seq_len=WINDOW
|
433 |
+
)
|
434 |
+
val_dataset = PagingMQTLDataset(dataset_map[f"validate_binned_{WINDOW}"],
|
435 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
436 |
+
tokenizer=tokenizer,
|
437 |
+
seq_len=WINDOW)
|
438 |
+
test_dataset = PagingMQTLDataset(dataset_map[f"test_binned_{WINDOW}"],
|
439 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
440 |
+
tokenizer=tokenizer,
|
441 |
+
seq_len=WINDOW)
|
442 |
+
|
443 |
+
data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset, batch_size=batch_size)
|
444 |
+
|
445 |
+
classifier_model = classifier_model #.to(DEVICE)
|
446 |
+
try:
|
447 |
+
classifier_model = classifier_model.from_pretrained(classifier_model.model_repository_name)
|
448 |
+
except Exception as x:
|
449 |
+
print(x)
|
450 |
+
|
451 |
+
classifier_module = MQtlBertClassifierLightningModule(
|
452 |
+
classifier=classifier_model,
|
453 |
+
regularization=2, criterion=criterion)
|
454 |
+
|
455 |
+
# if os.path.exists(model_save_path):
|
456 |
+
# classifier_module.load_state_dict(torch.load(model_save_path))
|
457 |
+
|
458 |
+
classifier_module = classifier_module # .double()
|
459 |
+
|
460 |
+
trainer = Trainer(max_epochs=max_epochs, precision="32")
|
461 |
+
trainer.fit(model=classifier_module, datamodule=data_module)
|
462 |
+
timber.info("\n\n")
|
463 |
+
trainer.test(model=classifier_module, datamodule=data_module)
|
464 |
+
timber.info("\n\n")
|
465 |
+
# torch.save(classifier_module.state_dict(), model_save_path) # deprecated, use classifier_model.save_pretrained(model_subdirectory) instead
|
466 |
+
|
467 |
+
# save locally
|
468 |
+
model_subdirectory = classifier_model.model_repository_name
|
469 |
+
classifier_model.save_pretrained(model_subdirectory)
|
470 |
+
|
471 |
+
# push to the hub
|
472 |
+
commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
|
473 |
+
if is_my_laptop:
|
474 |
+
commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"
|
475 |
+
|
476 |
+
classifier_model.push_to_hub(
|
477 |
+
repo_id=f"fahimfarhan/{classifier_model.model_repository_name}",
|
478 |
+
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
|
479 |
+
commit_message=commit_message # f":tada: Push model for window size {WINDOW}"
|
480 |
+
)
|
481 |
+
|
482 |
+
# reload
|
483 |
+
# classifier_model = classifier_model.from_pretrained(f"fahimfarhan/{classifier_model.model_repository_name}")
|
484 |
+
# classifier_model = classifier_model.from_pretrained(model_subdirectory)
|
485 |
+
|
486 |
+
pass
|
487 |
+
|
488 |
+
|
489 |
+
if __name__ == '__main__':
|
490 |
+
login_inside_huggingface_virtualmachine()
|
491 |
+
|
492 |
+
WINDOW = 1000
|
493 |
+
some_model = DnaBert6MQTLClassifier(seq_len=WINDOW, model_repository_name="dnabert-6-mqtl-classifier")
|
494 |
+
criterion = ReshapedBCEWithLogitsLoss()
|
495 |
+
|
496 |
+
start_bert(
|
497 |
+
classifier_model=some_model,
|
498 |
+
criterion=criterion,
|
499 |
+
WINDOW=WINDOW,
|
500 |
+
is_debug=False,
|
501 |
+
max_epochs=20,
|
502 |
+
batch_size=16
|
503 |
+
)
|
504 |
+
pass
|