Spaces:
Runtime error
Runtime error
Soumic
commited on
Commit
•
78e1dd9
1
Parent(s):
b056aeb
:rocket: Add dockerfile, app.py, and requirements.txt
Browse files- Dockerfile +16 -0
- app.py +337 -0
- requirements.txt +31 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official PyTorch Docker image as a base (includes CUDA and PyTorch)
|
2 |
+
FROM pytorch/pytorch:1.11.0-cuda11.3-cudnn8-runtime
|
3 |
+
|
4 |
+
# Set a working directory in the container
|
5 |
+
WORKDIR /workspace
|
6 |
+
|
7 |
+
# Install Python dependencies
|
8 |
+
COPY requirements.txt .
|
9 |
+
RUN pip install --upgrade pip
|
10 |
+
RUN pip install -r requirements.txt
|
11 |
+
|
12 |
+
# Copy the training script
|
13 |
+
COPY app.py .
|
14 |
+
|
15 |
+
# Run the training script
|
16 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
4 |
+
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
|
5 |
+
from torch.utils.data import DataLoader, Dataset
|
6 |
+
from torcheval.metrics import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
7 |
+
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
from datasets import load_dataset
|
12 |
+
|
13 |
+
black = "\u001b[30m"
|
14 |
+
red = "\u001b[31m"
|
15 |
+
green = "\u001b[32m"
|
16 |
+
yellow = "\u001b[33m"
|
17 |
+
blue = "\u001b[34m"
|
18 |
+
magenta = "\u001b[35m"
|
19 |
+
cyan = "\u001b[36m"
|
20 |
+
white = "\u001b[37m"
|
21 |
+
|
22 |
+
FORWARD = "FORWARD_INPUT"
|
23 |
+
BACKWARD = "BACKWARD_INPUT"
|
24 |
+
|
25 |
+
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
|
26 |
+
|
27 |
+
|
28 |
+
class CommonAttentionLayer(nn.Module):
|
29 |
+
def __init__(self, hidden_size, *args, **kwargs):
|
30 |
+
super().__init__(*args, **kwargs)
|
31 |
+
self.attention_linear = nn.Linear(hidden_size, 1)
|
32 |
+
pass
|
33 |
+
|
34 |
+
def forward(self, hidden_states):
|
35 |
+
# Apply linear layer
|
36 |
+
attn_weights = self.attention_linear(hidden_states)
|
37 |
+
# Apply softmax to get attention scores
|
38 |
+
attn_weights = torch.softmax(attn_weights, dim=1)
|
39 |
+
# Apply attention weights to hidden states
|
40 |
+
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
41 |
+
return context_vector, attn_weights
|
42 |
+
|
43 |
+
|
44 |
+
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
|
45 |
+
def forward(self, input, target):
|
46 |
+
return super().forward(input.squeeze(), target.float())
|
47 |
+
|
48 |
+
|
49 |
+
class MQtlDnaBERT6Classifier(nn.Module):
|
50 |
+
def __init__(self,
|
51 |
+
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
52 |
+
hidden_size=768,
|
53 |
+
num_classes=1,
|
54 |
+
*args,
|
55 |
+
**kwargs
|
56 |
+
):
|
57 |
+
super().__init__(*args, **kwargs)
|
58 |
+
|
59 |
+
self.model_name = "MQtlDnaBERT6Classifier"
|
60 |
+
|
61 |
+
self.bert_model = bert_model
|
62 |
+
self.attention = CommonAttentionLayer(hidden_size)
|
63 |
+
self.classifier = nn.Linear(hidden_size, num_classes)
|
64 |
+
pass
|
65 |
+
|
66 |
+
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
|
67 |
+
"""
|
68 |
+
# torch.Size([128, 1, 512]) --> [128, 512]
|
69 |
+
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
|
70 |
+
# torch.Size([16, 1, 512]) --> [16, 512]
|
71 |
+
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
|
72 |
+
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
|
73 |
+
"""
|
74 |
+
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
|
75 |
+
input_ids=input_ids,
|
76 |
+
attention_mask=attention_mask,
|
77 |
+
token_type_ids=token_type_ids
|
78 |
+
)
|
79 |
+
|
80 |
+
last_hidden_state = bert_output.last_hidden_state
|
81 |
+
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
|
82 |
+
y = self.classifier(context_vector)
|
83 |
+
return y
|
84 |
+
|
85 |
+
|
86 |
+
class TorchMetrics:
|
87 |
+
def __init__(self):
|
88 |
+
self.binary_accuracy = BinaryAccuracy() #.to(device)
|
89 |
+
self.binary_auc = BinaryAUROC() # .to(device)
|
90 |
+
self.binary_f1_score = BinaryF1Score() # .to(device)
|
91 |
+
self.binary_precision = BinaryPrecision() # .to(device)
|
92 |
+
self.binary_recall = BinaryRecall() # .to(device)
|
93 |
+
pass
|
94 |
+
|
95 |
+
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
96 |
+
# it looks like the library maintainers changed preds to input, ie, before: preds, now: input
|
97 |
+
self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
|
98 |
+
self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
|
99 |
+
self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
|
100 |
+
self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
|
101 |
+
self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
|
102 |
+
pass
|
103 |
+
|
104 |
+
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
|
105 |
+
b_accuracy = self.binary_accuracy.compute()
|
106 |
+
b_auc = self.binary_auc.compute()
|
107 |
+
b_f1_score = self.binary_f1_score.compute()
|
108 |
+
b_precision = self.binary_precision.compute()
|
109 |
+
b_recall = self.binary_recall.compute()
|
110 |
+
# timber.info( log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
|
111 |
+
log(f"{log_prefix}_accuracy", b_accuracy)
|
112 |
+
log(f"{log_prefix}_auc", b_auc)
|
113 |
+
log(f"{log_prefix}_f1_score", b_f1_score)
|
114 |
+
log(f"{log_prefix}_precision", b_precision)
|
115 |
+
log(f"{log_prefix}_recall", b_recall)
|
116 |
+
|
117 |
+
self.binary_accuracy.reset()
|
118 |
+
self.binary_auc.reset()
|
119 |
+
self.binary_f1_score.reset()
|
120 |
+
self.binary_precision.reset()
|
121 |
+
self.binary_recall.reset()
|
122 |
+
pass
|
123 |
+
|
124 |
+
|
125 |
+
class MQtlBertClassifierLightningModule(LightningModule):
|
126 |
+
def __init__(self,
|
127 |
+
classifier: nn.Module,
|
128 |
+
criterion=None, # nn.BCEWithLogitsLoss(),
|
129 |
+
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
|
130 |
+
l1_lambda=0.001,
|
131 |
+
l2_wright_decay=0.001,
|
132 |
+
*args: Any,
|
133 |
+
**kwargs: Any):
|
134 |
+
super().__init__(*args, **kwargs)
|
135 |
+
self.classifier = classifier
|
136 |
+
self.criterion = criterion
|
137 |
+
self.train_metrics = TorchMetrics()
|
138 |
+
self.validate_metrics = TorchMetrics()
|
139 |
+
self.test_metrics = TorchMetrics()
|
140 |
+
|
141 |
+
self.regularization = regularization
|
142 |
+
self.l1_lambda = l1_lambda
|
143 |
+
self.l2_weight_decay = l2_wright_decay
|
144 |
+
pass
|
145 |
+
|
146 |
+
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
|
147 |
+
input_ids: torch.tensor = x["input_ids"]
|
148 |
+
attention_mask: torch.tensor = x["attention_mask"]
|
149 |
+
token_type_ids: torch.tensor = x["token_type_ids"]
|
150 |
+
# print(f"\n{ type(input_ids) = }, {input_ids = }")
|
151 |
+
# print(f"{ type(attention_mask) = }, { attention_mask = }")
|
152 |
+
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
|
153 |
+
|
154 |
+
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
|
155 |
+
|
156 |
+
def configure_optimizers(self) -> OptimizerLRScheduler:
|
157 |
+
# Here we add weight decay (L2 regularization) to the optimizer
|
158 |
+
weight_decay = 0.0
|
159 |
+
if self.regularization == 2 or self.regularization == 3:
|
160 |
+
weight_decay = self.l2_weight_decay
|
161 |
+
return torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
|
162 |
+
|
163 |
+
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
164 |
+
# Accuracy on training batch data
|
165 |
+
x, y = batch
|
166 |
+
preds = self.forward(x)
|
167 |
+
loss = self.criterion(preds, y)
|
168 |
+
|
169 |
+
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
|
170 |
+
l1_norm = sum(p.abs().sum() for p in self.parameters())
|
171 |
+
loss += self.l1_lambda * l1_norm
|
172 |
+
|
173 |
+
self.log("train_loss", loss)
|
174 |
+
# calculate the scores start
|
175 |
+
self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
176 |
+
# calculate the scores end
|
177 |
+
return loss
|
178 |
+
|
179 |
+
def on_train_epoch_end(self) -> None:
|
180 |
+
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
|
181 |
+
pass
|
182 |
+
|
183 |
+
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
184 |
+
# Accuracy on validation batch data
|
185 |
+
# print(f"debug { batch = }")
|
186 |
+
x, y = batch
|
187 |
+
preds = self.forward(x)
|
188 |
+
loss = 0 # self.criterion(preds, y)
|
189 |
+
self.log("valid_loss", loss)
|
190 |
+
# calculate the scores start
|
191 |
+
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
192 |
+
# calculate the scores end
|
193 |
+
return loss
|
194 |
+
|
195 |
+
def on_validation_epoch_end(self) -> None:
|
196 |
+
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
|
197 |
+
return None
|
198 |
+
|
199 |
+
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
200 |
+
# Accuracy on validation batch data
|
201 |
+
x, y = batch
|
202 |
+
preds = self.forward(x)
|
203 |
+
loss = self.criterion(preds, y)
|
204 |
+
self.log("test_loss", loss) # do we need this?
|
205 |
+
# calculate the scores start
|
206 |
+
self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
207 |
+
# calculate the scores end
|
208 |
+
return loss
|
209 |
+
|
210 |
+
def on_test_epoch_end(self) -> None:
|
211 |
+
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
|
212 |
+
return None
|
213 |
+
|
214 |
+
pass
|
215 |
+
|
216 |
+
|
217 |
+
class DNABERTDataset(Dataset):
|
218 |
+
def __init__(self, dataset, tokenizer, max_length=512):
|
219 |
+
self.dataset = dataset
|
220 |
+
self.bert_tokenizer = tokenizer
|
221 |
+
self.max_length = max_length
|
222 |
+
|
223 |
+
def __len__(self):
|
224 |
+
return len(self.dataset)
|
225 |
+
|
226 |
+
def __getitem__(self, idx):
|
227 |
+
sequence = self.dataset[idx]['sequence'] # Fetch the 'sequence' column
|
228 |
+
label = self.dataset[idx]['label'] # Fetch the 'label' column (or whatever target you use)
|
229 |
+
|
230 |
+
# Tokenize the sequence
|
231 |
+
encoded_sequence: BatchEncoding = self.bert_tokenizer(
|
232 |
+
sequence,
|
233 |
+
truncation=True,
|
234 |
+
padding='max_length',
|
235 |
+
max_length=self.max_length,
|
236 |
+
return_tensors='pt'
|
237 |
+
)
|
238 |
+
|
239 |
+
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
|
240 |
+
return encoded_sequence_squeezed, label
|
241 |
+
|
242 |
+
|
243 |
+
class DNABERTDataModule(LightningDataModule):
|
244 |
+
def __init__(self, model_name=DNA_BERT_6, batch_size=8):
|
245 |
+
super().__init__()
|
246 |
+
self.tokenized_dataset = None
|
247 |
+
self.dataset = None
|
248 |
+
self.train_dataset: DNABERTDataset = None
|
249 |
+
self.validate_dataset: DNABERTDataset = None
|
250 |
+
self.test_dataset: DNABERTDataset = None
|
251 |
+
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
|
252 |
+
self.batch_size = batch_size
|
253 |
+
|
254 |
+
def prepare_data(self):
|
255 |
+
# Download and prepare dataset
|
256 |
+
self.dataset = load_dataset("fahimfarhan/mqtl-classification-dataset-binned-200")
|
257 |
+
|
258 |
+
def setup(self, stage=None):
|
259 |
+
self.train_dataset = DNABERTDataset(self.dataset['train'], self.tokenizer)
|
260 |
+
self.validate_dataset = DNABERTDataset(self.dataset['validate'], self.tokenizer)
|
261 |
+
self.test_dataset = DNABERTDataset(self.dataset['test'], self.tokenizer)
|
262 |
+
|
263 |
+
def train_dataloader(self):
|
264 |
+
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=15)
|
265 |
+
|
266 |
+
def val_dataloader(self):
|
267 |
+
return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=15)
|
268 |
+
|
269 |
+
def test_dataloader(self) -> EVAL_DATALOADERS:
|
270 |
+
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=15)
|
271 |
+
|
272 |
+
|
273 |
+
# Initialize DataModule
|
274 |
+
model_name = "zhihan1996/DNABERT-6"
|
275 |
+
data_module = DNABERTDataModule(model_name=model_name, batch_size=8)
|
276 |
+
|
277 |
+
|
278 |
+
def start_bert(classifier_model, model_save_path, criterion, WINDOW=200, batch_size=4,
|
279 |
+
dataset_folder_prefix="inputdata/", is_binned=True, is_debug=False, max_epochs=10):
|
280 |
+
file_suffix = ""
|
281 |
+
if is_binned:
|
282 |
+
file_suffix = "_binned"
|
283 |
+
|
284 |
+
data_module = DNABERTDataModule(batch_size=batch_size)
|
285 |
+
|
286 |
+
# classifier_model = classifier_model.to(DEVICE)
|
287 |
+
|
288 |
+
classifier_module = MQtlBertClassifierLightningModule(
|
289 |
+
classifier=classifier_model,
|
290 |
+
regularization=2, criterion=criterion)
|
291 |
+
|
292 |
+
# if os.path.exists(model_save_path):
|
293 |
+
# classifier_module.load_state_dict(torch.load(model_save_path))
|
294 |
+
|
295 |
+
classifier_module = classifier_module # .double()
|
296 |
+
|
297 |
+
# Set up training arguments
|
298 |
+
training_args = TrainingArguments(
|
299 |
+
output_dir='./results',
|
300 |
+
evaluation_strategy="epoch",
|
301 |
+
per_device_train_batch_size=batch_size,
|
302 |
+
per_device_eval_batch_size=batch_size,
|
303 |
+
num_train_epochs=max_epochs,
|
304 |
+
logging_dir='./logs',
|
305 |
+
report_to="none", # Disable reporting to WandB, etc.
|
306 |
+
)
|
307 |
+
|
308 |
+
# Prepare data using the DataModule
|
309 |
+
data_module.prepare_data()
|
310 |
+
data_module.setup()
|
311 |
+
|
312 |
+
# Initialize Trainer
|
313 |
+
# trainer = Trainer(
|
314 |
+
# model=classifier_module,
|
315 |
+
# args=training_args,
|
316 |
+
# train_dataset=data_module.tokenized_dataset["train"],
|
317 |
+
# eval_dataset=data_module.tokenized_dataset["test"],
|
318 |
+
# )
|
319 |
+
|
320 |
+
trainer = Trainer(max_epochs=max_epochs, precision="32")
|
321 |
+
|
322 |
+
# Train the model
|
323 |
+
trainer.fit(model=classifier_module, datamodule=data_module)
|
324 |
+
trainer.test(model=classifier_module, datamodule=data_module)
|
325 |
+
torch.save(classifier_module.state_dict(), model_save_path)
|
326 |
+
|
327 |
+
classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")
|
328 |
+
pass
|
329 |
+
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
dataset_folder_prefix = "inputdata/"
|
333 |
+
pytorch_model = MQtlDnaBERT6Classifier()
|
334 |
+
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
|
335 |
+
criterion=ReshapedBCEWithLogitsLoss(), WINDOW=200, batch_size=4,
|
336 |
+
dataset_folder_prefix=dataset_folder_prefix, max_epochs=2)
|
337 |
+
pass
|
requirements.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate # required by HayenaDNA
|
2 |
+
datasets
|
3 |
+
pandas
|
4 |
+
polars
|
5 |
+
numpy
|
6 |
+
matplotlib
|
7 |
+
scipy
|
8 |
+
shap
|
9 |
+
scikit-learn
|
10 |
+
skorch==1.0.0
|
11 |
+
six
|
12 |
+
hyperopt
|
13 |
+
requests
|
14 |
+
pyyaml
|
15 |
+
Bio
|
16 |
+
plotly
|
17 |
+
Levenshtein
|
18 |
+
# pytorch
|
19 |
+
captum
|
20 |
+
torch==2.4.0
|
21 |
+
torchvision
|
22 |
+
torchaudio
|
23 |
+
torchsummary
|
24 |
+
torcheval
|
25 |
+
pydot
|
26 |
+
pydotplus
|
27 |
+
PySide2 # matplotlib dependency on ubuntu. you may need sth else for other os/env setup
|
28 |
+
torchviz
|
29 |
+
gReLU @ git+https://github.com/Genentech/gReLU # @623fee8023aabcef89f0afeedbeafff4b71453af
|
30 |
+
# lightning[extra] # cz I got a stupid warning in the console logs
|
31 |
+
torchmetrics
|