Spaces:
Sleeping
Sleeping
File size: 1,460 Bytes
18c3afa 3daea0f ae767c9 3daea0f f8363b2 18c3afa 96b8d80 18c3afa c8f842f ae767c9 f8363b2 18c3afa 4306722 18c3afa c8f842f 18c3afa d5f1a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import cv2
import requests
import os
import torch
import ultralytics
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt",
force_reload=False)
model.conf = 0.20 # NMS confidence threshold
path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
# outputs = model(source=image_path)
# results = outputs[0].cpu().numpy()
results = model(image_path)
results.xyxy[0] # img1 predictions (tensor)
results.pandas().xyxy[0] # img1 predictions (pandas)
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# for i, det in enumerate(results.boxes.xyxy):
# cv2.rectangle(
# image,
# (int(det[0]), int(det[1])),
# (int(det[2]), int(det[3])),
# color=(0, 0, 255),
# thickness=2,
# lineType=cv2.LINE_AA
# )
return results.show()
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(label="Output Image"),
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Cashew Disease Detection",
examples=path,
cache_examples=False,
)
interface_image.launch() |