File size: 849 Bytes
18c3afa
 
 
 
7925eaf
18c3afa
 
 
58a7962
ae767c9
 
3daea0f
f8363b2
18c3afa
ec1be34
96b8d80
71952de
7925eaf
 
71952de
f8363b2
18c3afa
8ca2990
18c3afa
 
437cc5e
18c3afa
 
 
 
 
c8f842f
18c3afa
 
d5f1a43
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
import cv2
import requests
import os
from PIL import Image
import torch
import ultralytics

model = torch.hub.load('yolov8n.pt') 
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt",
                        force_reload=False) 

model.conf = 0.20  # NMS confidence threshold

path  = [['img/test-image.jpg']]

def show_preds_image(im):

    results = model(im)  # inference
    return results.render()[0]

inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="filepath", label="Output Image"),
]
interface_image = gr.Interface(
    fn=show_preds_image,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Cashew Disease Detection",
    examples=path,
    cache_examples=False,
)

interface_image.launch()