import gradio as gr import cv2 import requests import os from PIL import Image import torch import ultralytics model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt", force_reload=False) model.conf = 0.20 # NMS confidence threshold path = [['img/test-image.jpg'], ['img/test-image-2.jpg']] # def show_preds_image(image_path): # image = cv2.imread(image_path) # # outputs = model(source=image_path) # # results = outputs[0].cpu().numpy() # results = model(image_path) # results.xyxy[0] # img1 predictions (tensor) # results.pandas().xyxy[0] # img1 predictions (pandas) # predictions = results.pred[0] # boxes = predictions[:, :4] # x1, y1, x2, y2 # scores = predictions[:, 4] # categories = predictions[:, 5] # # for i, det in enumerate(results.boxes.xyxy): # # cv2.rectangle( # # image, # # (int(det[0]), int(det[1])), # # (int(det[2]), int(det[3])), # # color=(0, 0, 255), # # thickness=2, # # lineType=cv2.LINE_AA # # ) # return results.show() def show_preds_image(im, size=640): g = (size / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im) # inference results.render() # updates results.imgs with boxes and labels results.save() os.system("ls") return "out.png" inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="filepath", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Cashew Disease Detection", examples=path, cache_examples=False, ) interface_image.launch()