Spaces:
Runtime error
Runtime error
File size: 7,608 Bytes
79772ab 4a18f9e 79772ab 2b5b254 79772ab 2b5b254 79772ab 2b5b254 79772ab 2b5b254 79772ab 3a09844 79772ab 851812a 79772ab 851812a 79772ab 3a09844 79772ab 369bb24 79772ab 369bb24 c57b026 369bb24 79772ab 369bb24 79772ab 369bb24 79772ab 81fccc7 79772ab c57b026 79772ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
from pathlib import Path
from urllib.parse import urlparse
import gradio as gr
import psutil
from ctransformers import AutoModelForCausalLM
from huggingface_hub import hf_hub_download
URL = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q2_K.gguf"
repo_id = "/".join(urlparse(URL).path.strip("/").split("/")[:2])
model_file = Path(URL).name
_ = hf_hub_download(
repo_id=repo_id,
revision="main",
filename=model_file,
local_dir="models",
# local_dir_use_symlinks=True,
)
llm = AutoModelForCausalLM.from_pretrained(
_,
model_type="llama",
threads=psutil.cpu_count(logical=False),
)
TITLE = f"""<h2 align="center"> chat-ggml ({model_file})"""
USER_NAME = "User"
BOT_NAME = "Assistant"
DEFAULT_INSTRUCTIONS = """The following is a conversation between a highly knowledgeable and intelligent AI assistant and a human User. In the following interactions, User and Assistant will converse and Assistant will answer User's questions.
"""
RETRY_COMMAND = "/retry"
STOP_STR = f"\n{USER_NAME}:"
STOP_SUSPECT_LIST = [":", "\n", "User"]
def chat_accordion():
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=0.99,
value=0.9,
step=0.01,
interactive=True,
label="p (nucleus sampling)",
)
return temperature, top_p
def format_chat_prompt(message: str, chat_history, instructions: str) -> str:
instructions = instructions.strip(" ").strip("\n")
prompt = instructions
for turn in chat_history:
user_message, bot_message = turn
prompt = f"{prompt}\n{USER_NAME}: {user_message}\n{BOT_NAME}: {bot_message}"
prompt = f"{prompt}\n{USER_NAME}: {message}\n{BOT_NAME}:"
return prompt
def chat():
with gr.Column(elem_id="chat_container"):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot")
with gr.Row():
inputs = gr.Textbox(
placeholder=f"Hello {BOT_NAME} !!",
label="Type an input and press Enter",
max_lines=3,
)
with gr.Row(elem_id="button_container"):
with gr.Column():
retry_button = gr.Button("♻️ Retry")
with gr.Column():
delete_turn_button = gr.Button("✨ Undo")
with gr.Column():
clear_chat_button = gr.Button("🧽 Clear")
gr.Examples(
[
["Hey! Any recommendations for my holidays"],
["What's the Everett interpretation of quantum mechanics?"],
[
"Give me a list of the top 10 dive sites you would recommend around the world."
],
["Can you tell me more about deep-water soloing?"],
],
inputs=inputs,
label="Click on any example and press Enter in the input textbox!",
)
with gr.Row(elem_id="param_container"):
with gr.Column():
temperature, top_p = chat_accordion()
with gr.Column():
with gr.Accordion("Instructions", open=False):
instructions = gr.Textbox(
placeholder="LLM instructions",
value=DEFAULT_INSTRUCTIONS,
lines=3,
interactive=True,
label="Instructions",
max_lines=10,
show_label=False,
)
# with gr.Accordion("Role #1", open=False):
# instructions = gr.Textbox(
# placeholder="Role #1 like ### Instruction",
# value=USER_NAME,
# lines=1,
# interactive=True,
# label="USER_NAME",
# max_lines=1,
# show_label=False,
# )
# with gr.Accordion("Role #2", open=False):
# instructions = gr.Textbox(
# placeholder="Role #2 like ### Response",
# value=BOT_NAME,
# lines=1,
# interactive=True,
# label="BOT_NAME",
# max_lines=1,
# show_label=False,
# )
def run_chat(
message: str, chat_history, instructions: str, temperature: float, top_p: float
):
if not message or (message == RETRY_COMMAND and len(chat_history) == 0):
yield chat_history
return
if message == RETRY_COMMAND and chat_history:
prev_turn = chat_history.pop(-1)
user_message, _ = prev_turn
message = user_message
prompt = format_chat_prompt(message, chat_history, instructions)
chat_history = chat_history + [[message, ""]]
stream = llm(
prompt,
max_new_tokens=1024,
stop=[STOP_STR, "<|endoftext|>"],
temperature=temperature,
top_p=top_p,
stream=True,
)
acc_text = ""
for idx, response in enumerate(stream):
text_token = response
if text_token in STOP_SUSPECT_LIST:
acc_text += text_token
continue
if idx == 0 and text_token.startswith(" "):
text_token = text_token[1:]
acc_text += text_token
last_turn = list(chat_history.pop(-1))
last_turn[-1] += acc_text
chat_history = chat_history + [last_turn]
yield chat_history
acc_text = ""
def delete_last_turn(chat_history):
if chat_history:
chat_history.pop(-1)
return {chatbot: gr.update(value=chat_history)}
def run_retry(
message: str, chat_history, instructions: str, temperature: float, top_p: float
):
yield from run_chat(
RETRY_COMMAND, chat_history, instructions, temperature, top_p
)
def clear_chat():
return []
inputs.submit(
run_chat,
[inputs, chatbot, instructions, temperature, top_p],
outputs=[chatbot],
show_progress="minimal",
)
inputs.submit(lambda: "", inputs=None, outputs=inputs)
delete_turn_button.click(delete_last_turn, inputs=[chatbot], outputs=[chatbot])
retry_button.click(
run_retry,
[inputs, chatbot, instructions, temperature, top_p],
outputs=[chatbot],
show_progress="minimal",
)
clear_chat_button.click(clear_chat, [], chatbot)
def get_demo():
with gr.Blocks(
# css=None
# css="""#chat_container {width: 700px; margin-left: auto; margin-right: auto;}
# #button_container {width: 700px; margin-left: auto; margin-right: auto;}
# #param_container {width: 700px; margin-left: auto; margin-right: auto;}"""
css="""#chatbot {
font-size: 14px;
min-height: 300px;
}"""
) as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column():
gr.Markdown(
"""**Chat, brainstorm ideas, discuss your holiday plans, and more!**
"""
)
chat()
return demo
if __name__ == "__main__":
demo = get_demo()
demo.queue(max_size=64, concurrency_count=8)
demo.launch(server_name="0.0.0.0", server_port=7860)
|