File size: 7,608 Bytes
79772ab
 
 
 
 
 
 
 
 
4a18f9e
79772ab
 
 
 
 
 
 
2b5b254
79772ab
 
 
 
 
 
 
2b5b254
79772ab
 
 
2b5b254
79772ab
2b5b254
 
79772ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a09844
79772ab
851812a
79772ab
851812a
79772ab
 
 
3a09844
79772ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369bb24
79772ab
 
369bb24
c57b026
 
369bb24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79772ab
 
369bb24
79772ab
 
 
 
 
 
 
 
 
 
 
 
 
 
369bb24
79772ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fccc7
79772ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c57b026
79772ab
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from pathlib import Path
from urllib.parse import urlparse

import gradio as gr
import psutil
from ctransformers import AutoModelForCausalLM
from huggingface_hub import hf_hub_download


URL = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q2_K.gguf"
repo_id = "/".join(urlparse(URL).path.strip("/").split("/")[:2])


model_file = Path(URL).name

_ = hf_hub_download(
    repo_id=repo_id,
    revision="main",
    filename=model_file,
    local_dir="models",
    # local_dir_use_symlinks=True,
)

llm = AutoModelForCausalLM.from_pretrained(
    _,
    model_type="llama",
    threads=psutil.cpu_count(logical=False),
)

TITLE = f"""<h2 align="center"> chat-ggml ({model_file})"""
USER_NAME = "User"
BOT_NAME = "Assistant"
DEFAULT_INSTRUCTIONS = """The following is a conversation between a highly knowledgeable and intelligent AI assistant and a human User. In the following interactions, User and Assistant will converse and Assistant will answer User's questions.
"""
RETRY_COMMAND = "/retry"
STOP_STR = f"\n{USER_NAME}:"
STOP_SUSPECT_LIST = [":", "\n", "User"]


def chat_accordion():
    with gr.Accordion("Parameters", open=False):
        temperature = gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.8,
            step=0.1,
            interactive=True,
            label="Temperature",
        )
        top_p = gr.Slider(
            minimum=0.1,
            maximum=0.99,
            value=0.9,
            step=0.01,
            interactive=True,
            label="p (nucleus sampling)",
        )
    return temperature, top_p


def format_chat_prompt(message: str, chat_history, instructions: str) -> str:
    instructions = instructions.strip(" ").strip("\n")
    prompt = instructions
    for turn in chat_history:
        user_message, bot_message = turn
        prompt = f"{prompt}\n{USER_NAME}: {user_message}\n{BOT_NAME}: {bot_message}"
    prompt = f"{prompt}\n{USER_NAME}: {message}\n{BOT_NAME}:"
    return prompt


def chat():
    with gr.Column(elem_id="chat_container"):
        with gr.Row():
            chatbot = gr.Chatbot(elem_id="chatbot")
        with gr.Row():
            inputs = gr.Textbox(
                placeholder=f"Hello {BOT_NAME} !!",
                label="Type an input and press Enter",
                max_lines=3,
            )

    with gr.Row(elem_id="button_container"):
        with gr.Column():
            retry_button = gr.Button("♻️ Retry")
        with gr.Column():
            delete_turn_button = gr.Button("✨ Undo")
        with gr.Column():
            clear_chat_button = gr.Button("🧽 Clear")

    gr.Examples(
        [
            ["Hey! Any recommendations for my holidays"],
            ["What's the Everett interpretation of quantum mechanics?"],
            [
                "Give me a list of the top 10 dive sites you would recommend around the world."
            ],
            ["Can you tell me more about deep-water soloing?"],
        ],
        inputs=inputs,
        label="Click on any example and press Enter in the input textbox!",
    )

    with gr.Row(elem_id="param_container"):
        with gr.Column():
            temperature, top_p = chat_accordion()
        with gr.Column():
            with gr.Accordion("Instructions", open=False):
                instructions = gr.Textbox(
                    placeholder="LLM instructions",
                    value=DEFAULT_INSTRUCTIONS,
                    lines=3,
                    interactive=True,
                    label="Instructions",
                    max_lines=10,
                    show_label=False,
                )
            # with gr.Accordion("Role #1", open=False):
            #     instructions = gr.Textbox(
            #         placeholder="Role #1 like ### Instruction",
            #         value=USER_NAME,
            #         lines=1,
            #         interactive=True,
            #         label="USER_NAME",
            #         max_lines=1,
            #         show_label=False,
            #     )
            # with gr.Accordion("Role #2", open=False):
            #     instructions = gr.Textbox(
            #         placeholder="Role #2 like ### Response",
            #         value=BOT_NAME,
            #         lines=1,
            #         interactive=True,
            #         label="BOT_NAME",
            #         max_lines=1,
            #         show_label=False,
            #     )

    def run_chat(
        message: str, chat_history, instructions: str,  temperature: float, top_p: float
    ):
        if not message or (message == RETRY_COMMAND and len(chat_history) == 0):
            yield chat_history
            return

        if message == RETRY_COMMAND and chat_history:
            prev_turn = chat_history.pop(-1)
            user_message, _ = prev_turn
            message = user_message

        prompt = format_chat_prompt(message, chat_history, instructions)
        chat_history = chat_history + [[message, ""]]
        stream = llm(
            prompt,
            max_new_tokens=1024,
            stop=[STOP_STR, "<|endoftext|>"],
            temperature=temperature,
            top_p=top_p,
            stream=True,
        )
        acc_text = ""
        for idx, response in enumerate(stream):
            text_token = response

            if text_token in STOP_SUSPECT_LIST:
                acc_text += text_token
                continue

            if idx == 0 and text_token.startswith(" "):
                text_token = text_token[1:]

            acc_text += text_token
            last_turn = list(chat_history.pop(-1))
            last_turn[-1] += acc_text
            chat_history = chat_history + [last_turn]
            yield chat_history
            acc_text = ""

    def delete_last_turn(chat_history):
        if chat_history:
            chat_history.pop(-1)
        return {chatbot: gr.update(value=chat_history)}

    def run_retry(
        message: str, chat_history, instructions: str, temperature: float, top_p: float
    ):
        yield from run_chat(
            RETRY_COMMAND, chat_history, instructions, temperature, top_p
        )

    def clear_chat():
        return []

    inputs.submit(
        run_chat,
        [inputs, chatbot, instructions, temperature, top_p],
        outputs=[chatbot],
        show_progress="minimal",
    )
    inputs.submit(lambda: "", inputs=None, outputs=inputs)
    delete_turn_button.click(delete_last_turn, inputs=[chatbot], outputs=[chatbot])
    retry_button.click(
        run_retry,
        [inputs, chatbot, instructions, temperature, top_p],
        outputs=[chatbot],
        show_progress="minimal",
    )
    clear_chat_button.click(clear_chat, [], chatbot)



def get_demo():
    with gr.Blocks(
        # css=None
        # css="""#chat_container {width: 700px; margin-left: auto; margin-right: auto;}
        #        #button_container {width: 700px; margin-left: auto; margin-right: auto;}
        #        #param_container {width: 700px; margin-left: auto; margin-right: auto;}"""
        css="""#chatbot {
    font-size: 14px;
    min-height: 300px;
}"""
    ) as demo:
        gr.HTML(TITLE)

        with gr.Row():
            with gr.Column():
                gr.Markdown(
                    """**Chat, brainstorm ideas, discuss your holiday plans, and more!**
                    """
                )

        chat()

    return demo


if __name__ == "__main__":
    demo = get_demo()
    demo.queue(max_size=64, concurrency_count=8)
    demo.launch(server_name="0.0.0.0", server_port=7860)