faldeus0092 commited on
Commit
90d5741
β€’
1 Parent(s): 669a5cb

edited notebook

Browse files
Files changed (1) hide show
  1. notebook.ipynb +369 -369
notebook.ipynb CHANGED
@@ -69,7 +69,7 @@
69
  "outputs": [],
70
  "source": [
71
  "# @title #### Student Identity\n",
72
- "student_id = \"REAM84P0\" # @param {type:\"string\"}\n",
73
  "name = \"Gavin Bagus Kenzie Narain\" # @param {type:\"string\"}\n",
74
  "drive_link = \"https://drive.google.com/drive/folders/1smdyFGocnCQq7Iex6ozGwW-BGq5K9Ffw?usp=sharing\" # @param {type:\"string\"}\n",
75
  "assignment_id = \"00_text_portfolio_project\""
@@ -90,16 +90,16 @@
90
  "execution_count": 5,
91
  "id": "36c07e23-0280-467f-b0d2-44d966253bb4",
92
  "metadata": {
93
- "id": "36c07e23-0280-467f-b0d2-44d966253bb4",
94
  "colab": {
95
  "base_uri": "https://localhost:8080/"
96
  },
 
97
  "outputId": "117ef0a6-fc2f-40be-c661-3807fc5192ca"
98
  },
99
  "outputs": [
100
  {
101
- "output_type": "stream",
102
  "name": "stdout",
 
103
  "text": [
104
  "Collecting rggrader\n",
105
  " Downloading rggrader-0.1.6-py3-none-any.whl (2.5 kB)\n",
@@ -152,11 +152,8 @@
152
  },
153
  {
154
  "cell_type": "code",
155
- "source": [
156
- "from langchain.llms import CTransformers\n",
157
- "config = {'max_new_tokens': 100, 'temperature': 0}\n",
158
- "llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', model_file=\"mistral-7b-instruct-v0.1.Q4_K_M.gguf\", config=config)"
159
- ],
160
  "metadata": {
161
  "colab": {
162
  "base_uri": "https://localhost:8080/",
@@ -189,41 +186,50 @@
189
  "id": "vKiTNfz7z8Yv",
190
  "outputId": "8b1c80a7-2aeb-4ce1-aab2-f235c001c78c"
191
  },
192
- "id": "vKiTNfz7z8Yv",
193
- "execution_count": 1,
194
  "outputs": [
195
  {
196
- "output_type": "display_data",
197
  "data": {
198
- "text/plain": [
199
- "Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
200
- ],
201
  "application/vnd.jupyter.widget-view+json": {
 
202
  "version_major": 2,
203
- "version_minor": 0,
204
- "model_id": "54c0e2e43d27482f9dcb67ce9d60c85c"
205
- }
 
 
206
  },
207
- "metadata": {}
 
208
  },
209
  {
210
- "output_type": "display_data",
211
  "data": {
212
- "text/plain": [
213
- "Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
214
- ],
215
  "application/vnd.jupyter.widget-view+json": {
 
216
  "version_major": 2,
217
- "version_minor": 0,
218
- "model_id": "0b7b4570dc944e818348db1ce6954e3a"
219
- }
 
 
220
  },
221
- "metadata": {}
 
222
  }
 
 
 
 
 
223
  ]
224
  },
225
  {
226
  "cell_type": "code",
 
 
 
 
 
 
227
  "source": [
228
  "from langchain import PromptTemplate, LLMChain\n",
229
  "\n",
@@ -235,59 +241,52 @@
235
  "\n",
236
  "prompt = PromptTemplate(template=template, input_variables=[\"question\",\"context\"])\n",
237
  "llm_chain = LLMChain(prompt=prompt, llm=llm)"
238
- ],
239
- "metadata": {
240
- "id": "MNm_7_Z50LFu"
241
- },
242
- "id": "MNm_7_Z50LFu",
243
- "execution_count": 2,
244
- "outputs": []
245
  },
246
  {
247
  "cell_type": "code",
248
- "source": [
249
- "context_p = \"\"\" On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\"\"\"\n"
250
- ],
251
  "metadata": {
252
  "id": "KzW-JFVVCe4U"
253
  },
254
- "id": "KzW-JFVVCe4U",
255
- "execution_count": 4,
256
- "outputs": []
 
257
  },
258
  {
259
  "cell_type": "code",
 
 
 
 
 
 
260
  "source": [
261
  "question_p = \"\"\"What is the date for announcement\"\"\"\n",
262
  "response = llm_chain.run({\"question\":question_p,\"context\":context_p})\n",
263
  "\n",
264
  "response"
265
- ],
266
- "metadata": {
267
- "id": "83udgnzuCoIQ"
268
- },
269
- "id": "83udgnzuCoIQ",
270
- "execution_count": null,
271
- "outputs": []
272
  },
273
  {
274
  "cell_type": "code",
275
- "source": [
276
- "question_p = \"\"\"What company is buyer and seller here\"\"\"\n",
277
- "response = llm_chain.run({\"question\":question_p,\"context\":context_p})"
278
- ],
279
  "metadata": {
280
  "id": "w6Y9ZHVp89wa"
281
  },
282
- "id": "w6Y9ZHVp89wa",
283
- "execution_count": 5,
284
- "outputs": []
 
 
285
  },
286
  {
287
  "cell_type": "code",
288
- "source": [
289
- "response"
290
- ],
291
  "metadata": {
292
  "colab": {
293
  "base_uri": "https://localhost:8080/",
@@ -296,72 +295,51 @@
296
  "id": "s0PHieG69YhZ",
297
  "outputId": "45a8543d-4eed-430e-c50d-f0015b8ba50a"
298
  },
299
- "id": "s0PHieG69YhZ",
300
- "execution_count": 6,
301
  "outputs": [
302
  {
303
- "output_type": "execute_result",
304
  "data": {
305
- "text/plain": [
306
- "'The buyer is JSW Neo Energy and the seller is Mytrah Energy India Pvt Ltd.'"
307
- ],
308
  "application/vnd.google.colaboratory.intrinsic+json": {
309
  "type": "string"
310
- }
 
 
 
311
  },
 
312
  "metadata": {},
313
- "execution_count": 6
314
  }
 
 
 
315
  ]
316
  },
317
  {
318
  "cell_type": "markdown",
319
- "source": [
320
- "## Gradio"
321
- ],
322
  "metadata": {
323
  "id": "ibzXKDR--BR1"
324
  },
325
- "id": "ibzXKDR--BR1"
 
 
326
  },
327
  {
328
  "cell_type": "code",
329
- "source": [
330
- "!pip -q install gradio"
331
- ],
332
  "metadata": {
333
  "id": "NFnnoSyr97s-"
334
  },
335
- "id": "NFnnoSyr97s-",
336
- "execution_count": null,
337
- "outputs": []
 
338
  },
339
  {
340
  "cell_type": "code",
341
- "source": [
342
- "import gradio as gr\n",
343
- "\n",
344
- "def question_answer(context: str, question: str):\n",
345
- " print(context, question)\n",
346
- " response = llm_chain.run({\"question\":question, \"context\":context})\n",
347
- " print(response)\n",
348
- " return response\n",
349
- "\n",
350
- "theme = gr.themes.Default(\n",
351
- " primary_hue=\"indigo\",\n",
352
- " secondary_hue=\"pink\",\n",
353
- " neutral_hue=\"slate\",\n",
354
- ")\n",
355
- "\n",
356
- "with gr.Blocks(theme=theme) as interface:\n",
357
- " context = gr.Textbox(lines=5, placeholder=\"On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\", label=\"Context\")\n",
358
- " question = gr.Textbox(placeholder=\"What company is buyer and seller here\", label=\"Question\")\n",
359
- " answer = gr.Textbox(placeholder=\"Answer will be here\", label=\"Answer\")\n",
360
- " ask_button = gr.Button(\"Ask (this might take a minute since it's using CPU)\")\n",
361
- " ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
362
- "\n",
363
- "interface.launch(debug=True)"
364
- ],
365
  "metadata": {
366
  "colab": {
367
  "base_uri": "https://localhost:8080/",
@@ -370,12 +348,10 @@
370
  "id": "8JuL87Cj-Mkc",
371
  "outputId": "1e6a264b-c783-4bf5-be8f-98a36ef1dd90"
372
  },
373
- "id": "8JuL87Cj-Mkc",
374
- "execution_count": 4,
375
  "outputs": [
376
  {
377
- "output_type": "stream",
378
  "name": "stdout",
 
379
  "text": [
380
  "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
381
  "\n",
@@ -386,20 +362,20 @@
386
  ]
387
  },
388
  {
389
- "output_type": "display_data",
390
  "data": {
391
- "text/plain": [
392
- "<IPython.core.display.HTML object>"
393
- ],
394
  "text/html": [
395
  "<div><iframe src=\"https://92baaf0e9ff8456b6a.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
 
 
 
396
  ]
397
  },
398
- "metadata": {}
 
399
  },
400
  {
401
- "output_type": "stream",
402
  "name": "stdout",
 
403
  "text": [
404
  "James Webb Space Telescope detects quartz crystals in the atmosphere of exoplanet WASP-17b. What are found on the WASP-17b?\n",
405
  "Quartz crystals in the atmosphere of WASP-17b.\n",
@@ -408,37 +384,67 @@
408
  ]
409
  },
410
  {
411
- "output_type": "execute_result",
412
  "data": {
413
  "text/plain": []
414
  },
 
415
  "metadata": {},
416
- "execution_count": 4
417
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418
  ]
419
  },
420
  {
421
  "cell_type": "markdown",
422
- "source": [
423
- "![pin](https://media.discordapp.net/attachments/201349824300318721/1163850900838813746/image.png?ex=6541139e&is=652e9e9e&hm=a2213e8ae5b94786bb0661c94435a46885812c9eb532f56fc0270e789787b333&=&width=903&height=486)"
424
- ],
425
  "metadata": {
426
  "id": "1kOOTJkRGyxX"
427
  },
428
- "id": "1kOOTJkRGyxX"
 
 
429
  },
430
  {
431
  "cell_type": "markdown",
432
- "source": [
433
- "## To deploy on spaces"
434
- ],
435
  "metadata": {
436
  "id": "xMHp65tnEcm7"
437
  },
438
- "id": "xMHp65tnEcm7"
 
 
439
  },
440
  {
441
  "cell_type": "code",
 
 
 
 
 
 
442
  "source": [
443
  "import gradio as gr\n",
444
  "from langchain.llms import CTransformers\n",
@@ -475,13 +481,7 @@
475
  " ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
476
  "\n",
477
  "interface.launch(debug=True)"
478
- ],
479
- "metadata": {
480
- "id": "DGWZwlgVEegn"
481
- },
482
- "id": "DGWZwlgVEegn",
483
- "execution_count": null,
484
- "outputs": []
485
  },
486
  {
487
  "cell_type": "markdown",
@@ -498,26 +498,26 @@
498
  "execution_count": 7,
499
  "id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
500
  "metadata": {
501
- "id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
502
  "colab": {
503
  "base_uri": "https://localhost:8080/",
504
  "height": 35
505
  },
 
506
  "outputId": "72d04fb3-cffc-4647-d045-ee3d24e117cc"
507
  },
508
  "outputs": [
509
  {
510
- "output_type": "execute_result",
511
  "data": {
512
- "text/plain": [
513
- "'Assignment successfully submitted'"
514
- ],
515
  "application/vnd.google.colaboratory.intrinsic+json": {
516
  "type": "string"
517
- }
 
 
 
518
  },
 
519
  "metadata": {},
520
- "execution_count": 7
521
  }
522
  ],
523
  "source": [
@@ -538,6 +538,10 @@
538
  }
539
  ],
540
  "metadata": {
 
 
 
 
541
  "kernelspec": {
542
  "display_name": "Python 3 (ipykernel)",
543
  "language": "python",
@@ -555,108 +559,16 @@
555
  "pygments_lexer": "ipython3",
556
  "version": "3.11.3"
557
  },
558
- "colab": {
559
- "provenance": [],
560
- "toc_visible": true
561
- },
562
  "widgets": {
563
  "application/vnd.jupyter.widget-state+json": {
564
- "54c0e2e43d27482f9dcb67ce9d60c85c": {
565
- "model_module": "@jupyter-widgets/controls",
566
- "model_name": "HBoxModel",
567
- "model_module_version": "1.5.0",
568
- "state": {
569
- "_dom_classes": [],
570
- "_model_module": "@jupyter-widgets/controls",
571
- "_model_module_version": "1.5.0",
572
- "_model_name": "HBoxModel",
573
- "_view_count": null,
574
- "_view_module": "@jupyter-widgets/controls",
575
- "_view_module_version": "1.5.0",
576
- "_view_name": "HBoxView",
577
- "box_style": "",
578
- "children": [
579
- "IPY_MODEL_a1595618ab5f48e08a7c9a6a0879ad26",
580
- "IPY_MODEL_4912fec232b44537a80c52b04291fe7b",
581
- "IPY_MODEL_ca88cec6e0834e27990b8350b752c827"
582
- ],
583
- "layout": "IPY_MODEL_5ba1c94eddd24e2aae5b25d9d6884dc0"
584
- }
585
- },
586
- "a1595618ab5f48e08a7c9a6a0879ad26": {
587
- "model_module": "@jupyter-widgets/controls",
588
- "model_name": "HTMLModel",
589
- "model_module_version": "1.5.0",
590
  "state": {
591
- "_dom_classes": [],
592
- "_model_module": "@jupyter-widgets/controls",
593
- "_model_module_version": "1.5.0",
594
- "_model_name": "HTMLModel",
595
- "_view_count": null,
596
- "_view_module": "@jupyter-widgets/controls",
597
- "_view_module_version": "1.5.0",
598
- "_view_name": "HTMLView",
599
- "description": "",
600
- "description_tooltip": null,
601
- "layout": "IPY_MODEL_1708f929db494251b19de5d0322ff26d",
602
- "placeholder": "​",
603
- "style": "IPY_MODEL_2751b58cfcc84215aabfc45de27b77b3",
604
- "value": "Fetching 1 files: 100%"
605
- }
606
- },
607
- "4912fec232b44537a80c52b04291fe7b": {
608
- "model_module": "@jupyter-widgets/controls",
609
- "model_name": "FloatProgressModel",
610
- "model_module_version": "1.5.0",
611
- "state": {
612
- "_dom_classes": [],
613
- "_model_module": "@jupyter-widgets/controls",
614
- "_model_module_version": "1.5.0",
615
- "_model_name": "FloatProgressModel",
616
- "_view_count": null,
617
- "_view_module": "@jupyter-widgets/controls",
618
- "_view_module_version": "1.5.0",
619
- "_view_name": "ProgressView",
620
- "bar_style": "success",
621
- "description": "",
622
- "description_tooltip": null,
623
- "layout": "IPY_MODEL_38895ca8e4f749838b071b724cc39b46",
624
- "max": 1,
625
- "min": 0,
626
- "orientation": "horizontal",
627
- "style": "IPY_MODEL_55b8641523d84c15bea6b35f04c554fc",
628
- "value": 1
629
- }
630
- },
631
- "ca88cec6e0834e27990b8350b752c827": {
632
- "model_module": "@jupyter-widgets/controls",
633
- "model_name": "HTMLModel",
634
- "model_module_version": "1.5.0",
635
- "state": {
636
- "_dom_classes": [],
637
- "_model_module": "@jupyter-widgets/controls",
638
- "_model_module_version": "1.5.0",
639
- "_model_name": "HTMLModel",
640
- "_view_count": null,
641
- "_view_module": "@jupyter-widgets/controls",
642
- "_view_module_version": "1.5.0",
643
- "_view_name": "HTMLView",
644
- "description": "",
645
- "description_tooltip": null,
646
- "layout": "IPY_MODEL_866da5a8e421477c8089dbfa1bdcc812",
647
- "placeholder": "​",
648
- "style": "IPY_MODEL_66bbfff8db6146b2a7b922b1b590f1f9",
649
- "value": " 1/1 [00:00&lt;00:00, 36.62it/s]"
650
- }
651
- },
652
- "5ba1c94eddd24e2aae5b25d9d6884dc0": {
653
- "model_module": "@jupyter-widgets/base",
654
- "model_name": "LayoutModel",
655
- "model_module_version": "1.2.0",
656
- "state": {
657
- "_model_module": "@jupyter-widgets/base",
658
- "_model_module_version": "1.2.0",
659
- "_model_name": "LayoutModel",
660
  "_view_count": null,
661
  "_view_module": "@jupyter-widgets/base",
662
  "_view_module_version": "1.2.0",
@@ -701,10 +613,32 @@
701
  "width": null
702
  }
703
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704
  "1708f929db494251b19de5d0322ff26d": {
705
  "model_module": "@jupyter-widgets/base",
706
- "model_name": "LayoutModel",
707
  "model_module_version": "1.2.0",
 
708
  "state": {
709
  "_model_module": "@jupyter-widgets/base",
710
  "_model_module_version": "1.2.0",
@@ -753,93 +687,49 @@
753
  "width": null
754
  }
755
  },
756
- "2751b58cfcc84215aabfc45de27b77b3": {
757
  "model_module": "@jupyter-widgets/controls",
758
- "model_name": "DescriptionStyleModel",
759
  "model_module_version": "1.5.0",
 
760
  "state": {
 
761
  "_model_module": "@jupyter-widgets/controls",
762
  "_model_module_version": "1.5.0",
763
- "_model_name": "DescriptionStyleModel",
764
- "_view_count": null,
765
- "_view_module": "@jupyter-widgets/base",
766
- "_view_module_version": "1.2.0",
767
- "_view_name": "StyleView",
768
- "description_width": ""
769
- }
770
- },
771
- "38895ca8e4f749838b071b724cc39b46": {
772
- "model_module": "@jupyter-widgets/base",
773
- "model_name": "LayoutModel",
774
- "model_module_version": "1.2.0",
775
- "state": {
776
- "_model_module": "@jupyter-widgets/base",
777
- "_model_module_version": "1.2.0",
778
- "_model_name": "LayoutModel",
779
  "_view_count": null,
780
- "_view_module": "@jupyter-widgets/base",
781
- "_view_module_version": "1.2.0",
782
- "_view_name": "LayoutView",
783
- "align_content": null,
784
- "align_items": null,
785
- "align_self": null,
786
- "border": null,
787
- "bottom": null,
788
- "display": null,
789
- "flex": null,
790
- "flex_flow": null,
791
- "grid_area": null,
792
- "grid_auto_columns": null,
793
- "grid_auto_flow": null,
794
- "grid_auto_rows": null,
795
- "grid_column": null,
796
- "grid_gap": null,
797
- "grid_row": null,
798
- "grid_template_areas": null,
799
- "grid_template_columns": null,
800
- "grid_template_rows": null,
801
- "height": null,
802
- "justify_content": null,
803
- "justify_items": null,
804
- "left": null,
805
- "margin": null,
806
- "max_height": null,
807
- "max_width": null,
808
- "min_height": null,
809
- "min_width": null,
810
- "object_fit": null,
811
- "object_position": null,
812
- "order": null,
813
- "overflow": null,
814
- "overflow_x": null,
815
- "overflow_y": null,
816
- "padding": null,
817
- "right": null,
818
- "top": null,
819
- "visibility": null,
820
- "width": null
821
  }
822
  },
823
- "55b8641523d84c15bea6b35f04c554fc": {
824
  "model_module": "@jupyter-widgets/controls",
825
- "model_name": "ProgressStyleModel",
826
  "model_module_version": "1.5.0",
 
827
  "state": {
828
  "_model_module": "@jupyter-widgets/controls",
829
  "_model_module_version": "1.5.0",
830
- "_model_name": "ProgressStyleModel",
831
  "_view_count": null,
832
  "_view_module": "@jupyter-widgets/base",
833
  "_view_module_version": "1.2.0",
834
  "_view_name": "StyleView",
835
- "bar_color": null,
836
  "description_width": ""
837
  }
838
  },
839
- "866da5a8e421477c8089dbfa1bdcc812": {
840
  "model_module": "@jupyter-widgets/base",
841
- "model_name": "LayoutModel",
842
  "model_module_version": "1.2.0",
 
843
  "state": {
844
  "_model_module": "@jupyter-widgets/base",
845
  "_model_module_version": "1.2.0",
@@ -888,25 +778,34 @@
888
  "width": null
889
  }
890
  },
891
- "66bbfff8db6146b2a7b922b1b590f1f9": {
892
  "model_module": "@jupyter-widgets/controls",
893
- "model_name": "DescriptionStyleModel",
894
  "model_module_version": "1.5.0",
 
895
  "state": {
 
896
  "_model_module": "@jupyter-widgets/controls",
897
  "_model_module_version": "1.5.0",
898
- "_model_name": "DescriptionStyleModel",
899
  "_view_count": null,
900
- "_view_module": "@jupyter-widgets/base",
901
- "_view_module_version": "1.2.0",
902
- "_view_name": "StyleView",
903
- "description_width": ""
 
 
 
 
 
 
 
 
904
  }
905
  },
906
- "0b7b4570dc944e818348db1ce6954e3a": {
907
  "model_module": "@jupyter-widgets/controls",
908
- "model_name": "HBoxModel",
909
  "model_module_version": "1.5.0",
 
910
  "state": {
911
  "_dom_classes": [],
912
  "_model_module": "@jupyter-widgets/controls",
@@ -918,62 +817,33 @@
918
  "_view_name": "HBoxView",
919
  "box_style": "",
920
  "children": [
921
- "IPY_MODEL_580648891bde443786cf1b06070f846f",
922
- "IPY_MODEL_24e964fbe9044395a3bce8b1a83a05de",
923
- "IPY_MODEL_a5e99e6026f24c408cca741c6fc2509c"
924
  ],
925
- "layout": "IPY_MODEL_095fd8b26865435589b2e79e12ecef24"
926
  }
927
  },
928
- "580648891bde443786cf1b06070f846f": {
929
  "model_module": "@jupyter-widgets/controls",
930
- "model_name": "HTMLModel",
931
  "model_module_version": "1.5.0",
 
932
  "state": {
933
- "_dom_classes": [],
934
  "_model_module": "@jupyter-widgets/controls",
935
  "_model_module_version": "1.5.0",
936
- "_model_name": "HTMLModel",
937
  "_view_count": null,
938
- "_view_module": "@jupyter-widgets/controls",
939
- "_view_module_version": "1.5.0",
940
- "_view_name": "HTMLView",
941
- "description": "",
942
- "description_tooltip": null,
943
- "layout": "IPY_MODEL_a9cb9e343b93467895741fff5f0db25d",
944
- "placeholder": "​",
945
- "style": "IPY_MODEL_d9bf82bf03984146aadfa5441f89ea98",
946
- "value": "Fetching 1 files: 100%"
947
  }
948
  },
949
- "24e964fbe9044395a3bce8b1a83a05de": {
950
  "model_module": "@jupyter-widgets/controls",
951
- "model_name": "FloatProgressModel",
952
  "model_module_version": "1.5.0",
953
- "state": {
954
- "_dom_classes": [],
955
- "_model_module": "@jupyter-widgets/controls",
956
- "_model_module_version": "1.5.0",
957
- "_model_name": "FloatProgressModel",
958
- "_view_count": null,
959
- "_view_module": "@jupyter-widgets/controls",
960
- "_view_module_version": "1.5.0",
961
- "_view_name": "ProgressView",
962
- "bar_style": "success",
963
- "description": "",
964
- "description_tooltip": null,
965
- "layout": "IPY_MODEL_5adcafc9d6f84ca9ae372ee9295cd944",
966
- "max": 1,
967
- "min": 0,
968
- "orientation": "horizontal",
969
- "style": "IPY_MODEL_ccd9de576ca9430d9a8064a3a8e1347b",
970
- "value": 1
971
- }
972
- },
973
- "a5e99e6026f24c408cca741c6fc2509c": {
974
- "model_module": "@jupyter-widgets/controls",
975
  "model_name": "HTMLModel",
976
- "model_module_version": "1.5.0",
977
  "state": {
978
  "_dom_classes": [],
979
  "_model_module": "@jupyter-widgets/controls",
@@ -985,16 +855,16 @@
985
  "_view_name": "HTMLView",
986
  "description": "",
987
  "description_tooltip": null,
988
- "layout": "IPY_MODEL_9d20bac626ef472f848d727d56afc98c",
989
  "placeholder": "​",
990
- "style": "IPY_MODEL_75490fa060524ef3bd675bb41a0c5eb3",
991
- "value": " 1/1 [00:00&lt;00:00, 35.90it/s]"
992
  }
993
  },
994
- "095fd8b26865435589b2e79e12ecef24": {
995
  "model_module": "@jupyter-widgets/base",
996
- "model_name": "LayoutModel",
997
  "model_module_version": "1.2.0",
 
998
  "state": {
999
  "_model_module": "@jupyter-widgets/base",
1000
  "_model_module_version": "1.2.0",
@@ -1043,10 +913,10 @@
1043
  "width": null
1044
  }
1045
  },
1046
- "a9cb9e343b93467895741fff5f0db25d": {
1047
  "model_module": "@jupyter-widgets/base",
1048
- "model_name": "LayoutModel",
1049
  "model_module_version": "1.2.0",
 
1050
  "state": {
1051
  "_model_module": "@jupyter-widgets/base",
1052
  "_model_module_version": "1.2.0",
@@ -1095,10 +965,25 @@
1095
  "width": null
1096
  }
1097
  },
1098
- "d9bf82bf03984146aadfa5441f89ea98": {
1099
  "model_module": "@jupyter-widgets/controls",
 
1100
  "model_name": "DescriptionStyleModel",
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
  "model_module_version": "1.5.0",
 
1102
  "state": {
1103
  "_model_module": "@jupyter-widgets/controls",
1104
  "_model_module_version": "1.5.0",
@@ -1110,10 +995,62 @@
1110
  "description_width": ""
1111
  }
1112
  },
1113
- "5adcafc9d6f84ca9ae372ee9295cd944": {
1114
  "model_module": "@jupyter-widgets/base",
 
1115
  "model_name": "LayoutModel",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
  "model_module_version": "1.2.0",
 
1117
  "state": {
1118
  "_model_module": "@jupyter-widgets/base",
1119
  "_model_module_version": "1.2.0",
@@ -1162,26 +1099,52 @@
1162
  "width": null
1163
  }
1164
  },
1165
- "ccd9de576ca9430d9a8064a3a8e1347b": {
1166
  "model_module": "@jupyter-widgets/controls",
1167
- "model_name": "ProgressStyleModel",
1168
  "model_module_version": "1.5.0",
 
1169
  "state": {
 
1170
  "_model_module": "@jupyter-widgets/controls",
1171
  "_model_module_version": "1.5.0",
1172
- "_model_name": "ProgressStyleModel",
1173
  "_view_count": null,
1174
- "_view_module": "@jupyter-widgets/base",
1175
- "_view_module_version": "1.2.0",
1176
- "_view_name": "StyleView",
1177
- "bar_color": null,
1178
- "description_width": ""
 
 
 
 
1179
  }
1180
  },
1181
- "9d20bac626ef472f848d727d56afc98c": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
  "model_module": "@jupyter-widgets/base",
1183
- "model_name": "LayoutModel",
1184
  "model_module_version": "1.2.0",
 
1185
  "state": {
1186
  "_model_module": "@jupyter-widgets/base",
1187
  "_model_module_version": "1.2.0",
@@ -1230,10 +1193,47 @@
1230
  "width": null
1231
  }
1232
  },
1233
- "75490fa060524ef3bd675bb41a0c5eb3": {
1234
  "model_module": "@jupyter-widgets/controls",
1235
- "model_name": "DescriptionStyleModel",
1236
  "model_module_version": "1.5.0",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
  "state": {
1238
  "_model_module": "@jupyter-widgets/controls",
1239
  "_model_module_version": "1.5.0",
@@ -1250,4 +1250,4 @@
1250
  },
1251
  "nbformat": 4,
1252
  "nbformat_minor": 5
1253
- }
 
69
  "outputs": [],
70
  "source": [
71
  "# @title #### Student Identity\n",
72
+ "student_id = \"\" # @param {type:\"string\"}\n",
73
  "name = \"Gavin Bagus Kenzie Narain\" # @param {type:\"string\"}\n",
74
  "drive_link = \"https://drive.google.com/drive/folders/1smdyFGocnCQq7Iex6ozGwW-BGq5K9Ffw?usp=sharing\" # @param {type:\"string\"}\n",
75
  "assignment_id = \"00_text_portfolio_project\""
 
90
  "execution_count": 5,
91
  "id": "36c07e23-0280-467f-b0d2-44d966253bb4",
92
  "metadata": {
 
93
  "colab": {
94
  "base_uri": "https://localhost:8080/"
95
  },
96
+ "id": "36c07e23-0280-467f-b0d2-44d966253bb4",
97
  "outputId": "117ef0a6-fc2f-40be-c661-3807fc5192ca"
98
  },
99
  "outputs": [
100
  {
 
101
  "name": "stdout",
102
+ "output_type": "stream",
103
  "text": [
104
  "Collecting rggrader\n",
105
  " Downloading rggrader-0.1.6-py3-none-any.whl (2.5 kB)\n",
 
152
  },
153
  {
154
  "cell_type": "code",
155
+ "execution_count": 1,
156
+ "id": "vKiTNfz7z8Yv",
 
 
 
157
  "metadata": {
158
  "colab": {
159
  "base_uri": "https://localhost:8080/",
 
186
  "id": "vKiTNfz7z8Yv",
187
  "outputId": "8b1c80a7-2aeb-4ce1-aab2-f235c001c78c"
188
  },
 
 
189
  "outputs": [
190
  {
 
191
  "data": {
 
 
 
192
  "application/vnd.jupyter.widget-view+json": {
193
+ "model_id": "54c0e2e43d27482f9dcb67ce9d60c85c",
194
  "version_major": 2,
195
+ "version_minor": 0
196
+ },
197
+ "text/plain": [
198
+ "Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
199
+ ]
200
  },
201
+ "metadata": {},
202
+ "output_type": "display_data"
203
  },
204
  {
 
205
  "data": {
 
 
 
206
  "application/vnd.jupyter.widget-view+json": {
207
+ "model_id": "0b7b4570dc944e818348db1ce6954e3a",
208
  "version_major": 2,
209
+ "version_minor": 0
210
+ },
211
+ "text/plain": [
212
+ "Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
213
+ ]
214
  },
215
+ "metadata": {},
216
+ "output_type": "display_data"
217
  }
218
+ ],
219
+ "source": [
220
+ "from langchain.llms import CTransformers\n",
221
+ "config = {'max_new_tokens': 100, 'temperature': 0}\n",
222
+ "llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', model_file=\"mistral-7b-instruct-v0.1.Q4_K_M.gguf\", config=config)"
223
  ]
224
  },
225
  {
226
  "cell_type": "code",
227
+ "execution_count": 2,
228
+ "id": "MNm_7_Z50LFu",
229
+ "metadata": {
230
+ "id": "MNm_7_Z50LFu"
231
+ },
232
+ "outputs": [],
233
  "source": [
234
  "from langchain import PromptTemplate, LLMChain\n",
235
  "\n",
 
241
  "\n",
242
  "prompt = PromptTemplate(template=template, input_variables=[\"question\",\"context\"])\n",
243
  "llm_chain = LLMChain(prompt=prompt, llm=llm)"
244
+ ]
 
 
 
 
 
 
245
  },
246
  {
247
  "cell_type": "code",
248
+ "execution_count": 4,
249
+ "id": "KzW-JFVVCe4U",
 
250
  "metadata": {
251
  "id": "KzW-JFVVCe4U"
252
  },
253
+ "outputs": [],
254
+ "source": [
255
+ "context_p = \"\"\" On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\"\"\"\n"
256
+ ]
257
  },
258
  {
259
  "cell_type": "code",
260
+ "execution_count": null,
261
+ "id": "83udgnzuCoIQ",
262
+ "metadata": {
263
+ "id": "83udgnzuCoIQ"
264
+ },
265
+ "outputs": [],
266
  "source": [
267
  "question_p = \"\"\"What is the date for announcement\"\"\"\n",
268
  "response = llm_chain.run({\"question\":question_p,\"context\":context_p})\n",
269
  "\n",
270
  "response"
271
+ ]
 
 
 
 
 
 
272
  },
273
  {
274
  "cell_type": "code",
275
+ "execution_count": 5,
276
+ "id": "w6Y9ZHVp89wa",
 
 
277
  "metadata": {
278
  "id": "w6Y9ZHVp89wa"
279
  },
280
+ "outputs": [],
281
+ "source": [
282
+ "question_p = \"\"\"What company is buyer and seller here\"\"\"\n",
283
+ "response = llm_chain.run({\"question\":question_p,\"context\":context_p})"
284
+ ]
285
  },
286
  {
287
  "cell_type": "code",
288
+ "execution_count": 6,
289
+ "id": "s0PHieG69YhZ",
 
290
  "metadata": {
291
  "colab": {
292
  "base_uri": "https://localhost:8080/",
 
295
  "id": "s0PHieG69YhZ",
296
  "outputId": "45a8543d-4eed-430e-c50d-f0015b8ba50a"
297
  },
 
 
298
  "outputs": [
299
  {
 
300
  "data": {
 
 
 
301
  "application/vnd.google.colaboratory.intrinsic+json": {
302
  "type": "string"
303
+ },
304
+ "text/plain": [
305
+ "'The buyer is JSW Neo Energy and the seller is Mytrah Energy India Pvt Ltd.'"
306
+ ]
307
  },
308
+ "execution_count": 6,
309
  "metadata": {},
310
+ "output_type": "execute_result"
311
  }
312
+ ],
313
+ "source": [
314
+ "response"
315
  ]
316
  },
317
  {
318
  "cell_type": "markdown",
319
+ "id": "ibzXKDR--BR1",
 
 
320
  "metadata": {
321
  "id": "ibzXKDR--BR1"
322
  },
323
+ "source": [
324
+ "## Gradio"
325
+ ]
326
  },
327
  {
328
  "cell_type": "code",
329
+ "execution_count": null,
330
+ "id": "NFnnoSyr97s-",
 
331
  "metadata": {
332
  "id": "NFnnoSyr97s-"
333
  },
334
+ "outputs": [],
335
+ "source": [
336
+ "!pip -q install gradio"
337
+ ]
338
  },
339
  {
340
  "cell_type": "code",
341
+ "execution_count": 4,
342
+ "id": "8JuL87Cj-Mkc",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343
  "metadata": {
344
  "colab": {
345
  "base_uri": "https://localhost:8080/",
 
348
  "id": "8JuL87Cj-Mkc",
349
  "outputId": "1e6a264b-c783-4bf5-be8f-98a36ef1dd90"
350
  },
 
 
351
  "outputs": [
352
  {
 
353
  "name": "stdout",
354
+ "output_type": "stream",
355
  "text": [
356
  "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
357
  "\n",
 
362
  ]
363
  },
364
  {
 
365
  "data": {
 
 
 
366
  "text/html": [
367
  "<div><iframe src=\"https://92baaf0e9ff8456b6a.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
368
+ ],
369
+ "text/plain": [
370
+ "<IPython.core.display.HTML object>"
371
  ]
372
  },
373
+ "metadata": {},
374
+ "output_type": "display_data"
375
  },
376
  {
 
377
  "name": "stdout",
378
+ "output_type": "stream",
379
  "text": [
380
  "James Webb Space Telescope detects quartz crystals in the atmosphere of exoplanet WASP-17b. What are found on the WASP-17b?\n",
381
  "Quartz crystals in the atmosphere of WASP-17b.\n",
 
384
  ]
385
  },
386
  {
 
387
  "data": {
388
  "text/plain": []
389
  },
390
+ "execution_count": 4,
391
  "metadata": {},
392
+ "output_type": "execute_result"
393
  }
394
+ ],
395
+ "source": [
396
+ "import gradio as gr\n",
397
+ "\n",
398
+ "def question_answer(context: str, question: str):\n",
399
+ " print(context, question)\n",
400
+ " response = llm_chain.run({\"question\":question, \"context\":context})\n",
401
+ " print(response)\n",
402
+ " return response\n",
403
+ "\n",
404
+ "theme = gr.themes.Default(\n",
405
+ " primary_hue=\"indigo\",\n",
406
+ " secondary_hue=\"pink\",\n",
407
+ " neutral_hue=\"slate\",\n",
408
+ ")\n",
409
+ "\n",
410
+ "with gr.Blocks(theme=theme) as interface:\n",
411
+ " context = gr.Textbox(lines=5, placeholder=\"On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\", label=\"Context\")\n",
412
+ " question = gr.Textbox(placeholder=\"What company is buyer and seller here\", label=\"Question\")\n",
413
+ " answer = gr.Textbox(placeholder=\"Answer will be here\", label=\"Answer\")\n",
414
+ " ask_button = gr.Button(\"Ask (this might take a minute since it's using CPU)\")\n",
415
+ " ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
416
+ "\n",
417
+ "interface.launch(debug=True)"
418
  ]
419
  },
420
  {
421
  "cell_type": "markdown",
422
+ "id": "1kOOTJkRGyxX",
 
 
423
  "metadata": {
424
  "id": "1kOOTJkRGyxX"
425
  },
426
+ "source": [
427
+ "![pin](https://media.discordapp.net/attachments/201349824300318721/1163850900838813746/image.png?ex=6541139e&is=652e9e9e&hm=a2213e8ae5b94786bb0661c94435a46885812c9eb532f56fc0270e789787b333&=&width=903&height=486)"
428
+ ]
429
  },
430
  {
431
  "cell_type": "markdown",
432
+ "id": "xMHp65tnEcm7",
 
 
433
  "metadata": {
434
  "id": "xMHp65tnEcm7"
435
  },
436
+ "source": [
437
+ "## To deploy on spaces"
438
+ ]
439
  },
440
  {
441
  "cell_type": "code",
442
+ "execution_count": null,
443
+ "id": "DGWZwlgVEegn",
444
+ "metadata": {
445
+ "id": "DGWZwlgVEegn"
446
+ },
447
+ "outputs": [],
448
  "source": [
449
  "import gradio as gr\n",
450
  "from langchain.llms import CTransformers\n",
 
481
  " ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
482
  "\n",
483
  "interface.launch(debug=True)"
484
+ ]
 
 
 
 
 
 
485
  },
486
  {
487
  "cell_type": "markdown",
 
498
  "execution_count": 7,
499
  "id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
500
  "metadata": {
 
501
  "colab": {
502
  "base_uri": "https://localhost:8080/",
503
  "height": 35
504
  },
505
+ "id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
506
  "outputId": "72d04fb3-cffc-4647-d045-ee3d24e117cc"
507
  },
508
  "outputs": [
509
  {
 
510
  "data": {
 
 
 
511
  "application/vnd.google.colaboratory.intrinsic+json": {
512
  "type": "string"
513
+ },
514
+ "text/plain": [
515
+ "'Assignment successfully submitted'"
516
+ ]
517
  },
518
+ "execution_count": 7,
519
  "metadata": {},
520
+ "output_type": "execute_result"
521
  }
522
  ],
523
  "source": [
 
538
  }
539
  ],
540
  "metadata": {
541
+ "colab": {
542
+ "provenance": [],
543
+ "toc_visible": true
544
+ },
545
  "kernelspec": {
546
  "display_name": "Python 3 (ipykernel)",
547
  "language": "python",
 
559
  "pygments_lexer": "ipython3",
560
  "version": "3.11.3"
561
  },
 
 
 
 
562
  "widgets": {
563
  "application/vnd.jupyter.widget-state+json": {
564
+ "095fd8b26865435589b2e79e12ecef24": {
565
+ "model_module": "@jupyter-widgets/base",
566
+ "model_module_version": "1.2.0",
567
+ "model_name": "LayoutModel",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568
  "state": {
569
+ "_model_module": "@jupyter-widgets/base",
570
+ "_model_module_version": "1.2.0",
571
+ "_model_name": "LayoutModel",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572
  "_view_count": null,
573
  "_view_module": "@jupyter-widgets/base",
574
  "_view_module_version": "1.2.0",
 
613
  "width": null
614
  }
615
  },
616
+ "0b7b4570dc944e818348db1ce6954e3a": {
617
+ "model_module": "@jupyter-widgets/controls",
618
+ "model_module_version": "1.5.0",
619
+ "model_name": "HBoxModel",
620
+ "state": {
621
+ "_dom_classes": [],
622
+ "_model_module": "@jupyter-widgets/controls",
623
+ "_model_module_version": "1.5.0",
624
+ "_model_name": "HBoxModel",
625
+ "_view_count": null,
626
+ "_view_module": "@jupyter-widgets/controls",
627
+ "_view_module_version": "1.5.0",
628
+ "_view_name": "HBoxView",
629
+ "box_style": "",
630
+ "children": [
631
+ "IPY_MODEL_580648891bde443786cf1b06070f846f",
632
+ "IPY_MODEL_24e964fbe9044395a3bce8b1a83a05de",
633
+ "IPY_MODEL_a5e99e6026f24c408cca741c6fc2509c"
634
+ ],
635
+ "layout": "IPY_MODEL_095fd8b26865435589b2e79e12ecef24"
636
+ }
637
+ },
638
  "1708f929db494251b19de5d0322ff26d": {
639
  "model_module": "@jupyter-widgets/base",
 
640
  "model_module_version": "1.2.0",
641
+ "model_name": "LayoutModel",
642
  "state": {
643
  "_model_module": "@jupyter-widgets/base",
644
  "_model_module_version": "1.2.0",
 
687
  "width": null
688
  }
689
  },
690
+ "24e964fbe9044395a3bce8b1a83a05de": {
691
  "model_module": "@jupyter-widgets/controls",
 
692
  "model_module_version": "1.5.0",
693
+ "model_name": "FloatProgressModel",
694
  "state": {
695
+ "_dom_classes": [],
696
  "_model_module": "@jupyter-widgets/controls",
697
  "_model_module_version": "1.5.0",
698
+ "_model_name": "FloatProgressModel",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699
  "_view_count": null,
700
+ "_view_module": "@jupyter-widgets/controls",
701
+ "_view_module_version": "1.5.0",
702
+ "_view_name": "ProgressView",
703
+ "bar_style": "success",
704
+ "description": "",
705
+ "description_tooltip": null,
706
+ "layout": "IPY_MODEL_5adcafc9d6f84ca9ae372ee9295cd944",
707
+ "max": 1,
708
+ "min": 0,
709
+ "orientation": "horizontal",
710
+ "style": "IPY_MODEL_ccd9de576ca9430d9a8064a3a8e1347b",
711
+ "value": 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712
  }
713
  },
714
+ "2751b58cfcc84215aabfc45de27b77b3": {
715
  "model_module": "@jupyter-widgets/controls",
 
716
  "model_module_version": "1.5.0",
717
+ "model_name": "DescriptionStyleModel",
718
  "state": {
719
  "_model_module": "@jupyter-widgets/controls",
720
  "_model_module_version": "1.5.0",
721
+ "_model_name": "DescriptionStyleModel",
722
  "_view_count": null,
723
  "_view_module": "@jupyter-widgets/base",
724
  "_view_module_version": "1.2.0",
725
  "_view_name": "StyleView",
 
726
  "description_width": ""
727
  }
728
  },
729
+ "38895ca8e4f749838b071b724cc39b46": {
730
  "model_module": "@jupyter-widgets/base",
 
731
  "model_module_version": "1.2.0",
732
+ "model_name": "LayoutModel",
733
  "state": {
734
  "_model_module": "@jupyter-widgets/base",
735
  "_model_module_version": "1.2.0",
 
778
  "width": null
779
  }
780
  },
781
+ "4912fec232b44537a80c52b04291fe7b": {
782
  "model_module": "@jupyter-widgets/controls",
 
783
  "model_module_version": "1.5.0",
784
+ "model_name": "FloatProgressModel",
785
  "state": {
786
+ "_dom_classes": [],
787
  "_model_module": "@jupyter-widgets/controls",
788
  "_model_module_version": "1.5.0",
789
+ "_model_name": "FloatProgressModel",
790
  "_view_count": null,
791
+ "_view_module": "@jupyter-widgets/controls",
792
+ "_view_module_version": "1.5.0",
793
+ "_view_name": "ProgressView",
794
+ "bar_style": "success",
795
+ "description": "",
796
+ "description_tooltip": null,
797
+ "layout": "IPY_MODEL_38895ca8e4f749838b071b724cc39b46",
798
+ "max": 1,
799
+ "min": 0,
800
+ "orientation": "horizontal",
801
+ "style": "IPY_MODEL_55b8641523d84c15bea6b35f04c554fc",
802
+ "value": 1
803
  }
804
  },
805
+ "54c0e2e43d27482f9dcb67ce9d60c85c": {
806
  "model_module": "@jupyter-widgets/controls",
 
807
  "model_module_version": "1.5.0",
808
+ "model_name": "HBoxModel",
809
  "state": {
810
  "_dom_classes": [],
811
  "_model_module": "@jupyter-widgets/controls",
 
817
  "_view_name": "HBoxView",
818
  "box_style": "",
819
  "children": [
820
+ "IPY_MODEL_a1595618ab5f48e08a7c9a6a0879ad26",
821
+ "IPY_MODEL_4912fec232b44537a80c52b04291fe7b",
822
+ "IPY_MODEL_ca88cec6e0834e27990b8350b752c827"
823
  ],
824
+ "layout": "IPY_MODEL_5ba1c94eddd24e2aae5b25d9d6884dc0"
825
  }
826
  },
827
+ "55b8641523d84c15bea6b35f04c554fc": {
828
  "model_module": "@jupyter-widgets/controls",
 
829
  "model_module_version": "1.5.0",
830
+ "model_name": "ProgressStyleModel",
831
  "state": {
 
832
  "_model_module": "@jupyter-widgets/controls",
833
  "_model_module_version": "1.5.0",
834
+ "_model_name": "ProgressStyleModel",
835
  "_view_count": null,
836
+ "_view_module": "@jupyter-widgets/base",
837
+ "_view_module_version": "1.2.0",
838
+ "_view_name": "StyleView",
839
+ "bar_color": null,
840
+ "description_width": ""
 
 
 
 
841
  }
842
  },
843
+ "580648891bde443786cf1b06070f846f": {
844
  "model_module": "@jupyter-widgets/controls",
 
845
  "model_module_version": "1.5.0",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846
  "model_name": "HTMLModel",
 
847
  "state": {
848
  "_dom_classes": [],
849
  "_model_module": "@jupyter-widgets/controls",
 
855
  "_view_name": "HTMLView",
856
  "description": "",
857
  "description_tooltip": null,
858
+ "layout": "IPY_MODEL_a9cb9e343b93467895741fff5f0db25d",
859
  "placeholder": "​",
860
+ "style": "IPY_MODEL_d9bf82bf03984146aadfa5441f89ea98",
861
+ "value": "Fetching 1 files: 100%"
862
  }
863
  },
864
+ "5adcafc9d6f84ca9ae372ee9295cd944": {
865
  "model_module": "@jupyter-widgets/base",
 
866
  "model_module_version": "1.2.0",
867
+ "model_name": "LayoutModel",
868
  "state": {
869
  "_model_module": "@jupyter-widgets/base",
870
  "_model_module_version": "1.2.0",
 
913
  "width": null
914
  }
915
  },
916
+ "5ba1c94eddd24e2aae5b25d9d6884dc0": {
917
  "model_module": "@jupyter-widgets/base",
 
918
  "model_module_version": "1.2.0",
919
+ "model_name": "LayoutModel",
920
  "state": {
921
  "_model_module": "@jupyter-widgets/base",
922
  "_model_module_version": "1.2.0",
 
965
  "width": null
966
  }
967
  },
968
+ "66bbfff8db6146b2a7b922b1b590f1f9": {
969
  "model_module": "@jupyter-widgets/controls",
970
+ "model_module_version": "1.5.0",
971
  "model_name": "DescriptionStyleModel",
972
+ "state": {
973
+ "_model_module": "@jupyter-widgets/controls",
974
+ "_model_module_version": "1.5.0",
975
+ "_model_name": "DescriptionStyleModel",
976
+ "_view_count": null,
977
+ "_view_module": "@jupyter-widgets/base",
978
+ "_view_module_version": "1.2.0",
979
+ "_view_name": "StyleView",
980
+ "description_width": ""
981
+ }
982
+ },
983
+ "75490fa060524ef3bd675bb41a0c5eb3": {
984
+ "model_module": "@jupyter-widgets/controls",
985
  "model_module_version": "1.5.0",
986
+ "model_name": "DescriptionStyleModel",
987
  "state": {
988
  "_model_module": "@jupyter-widgets/controls",
989
  "_model_module_version": "1.5.0",
 
995
  "description_width": ""
996
  }
997
  },
998
+ "866da5a8e421477c8089dbfa1bdcc812": {
999
  "model_module": "@jupyter-widgets/base",
1000
+ "model_module_version": "1.2.0",
1001
  "model_name": "LayoutModel",
1002
+ "state": {
1003
+ "_model_module": "@jupyter-widgets/base",
1004
+ "_model_module_version": "1.2.0",
1005
+ "_model_name": "LayoutModel",
1006
+ "_view_count": null,
1007
+ "_view_module": "@jupyter-widgets/base",
1008
+ "_view_module_version": "1.2.0",
1009
+ "_view_name": "LayoutView",
1010
+ "align_content": null,
1011
+ "align_items": null,
1012
+ "align_self": null,
1013
+ "border": null,
1014
+ "bottom": null,
1015
+ "display": null,
1016
+ "flex": null,
1017
+ "flex_flow": null,
1018
+ "grid_area": null,
1019
+ "grid_auto_columns": null,
1020
+ "grid_auto_flow": null,
1021
+ "grid_auto_rows": null,
1022
+ "grid_column": null,
1023
+ "grid_gap": null,
1024
+ "grid_row": null,
1025
+ "grid_template_areas": null,
1026
+ "grid_template_columns": null,
1027
+ "grid_template_rows": null,
1028
+ "height": null,
1029
+ "justify_content": null,
1030
+ "justify_items": null,
1031
+ "left": null,
1032
+ "margin": null,
1033
+ "max_height": null,
1034
+ "max_width": null,
1035
+ "min_height": null,
1036
+ "min_width": null,
1037
+ "object_fit": null,
1038
+ "object_position": null,
1039
+ "order": null,
1040
+ "overflow": null,
1041
+ "overflow_x": null,
1042
+ "overflow_y": null,
1043
+ "padding": null,
1044
+ "right": null,
1045
+ "top": null,
1046
+ "visibility": null,
1047
+ "width": null
1048
+ }
1049
+ },
1050
+ "9d20bac626ef472f848d727d56afc98c": {
1051
+ "model_module": "@jupyter-widgets/base",
1052
  "model_module_version": "1.2.0",
1053
+ "model_name": "LayoutModel",
1054
  "state": {
1055
  "_model_module": "@jupyter-widgets/base",
1056
  "_model_module_version": "1.2.0",
 
1099
  "width": null
1100
  }
1101
  },
1102
+ "a1595618ab5f48e08a7c9a6a0879ad26": {
1103
  "model_module": "@jupyter-widgets/controls",
 
1104
  "model_module_version": "1.5.0",
1105
+ "model_name": "HTMLModel",
1106
  "state": {
1107
+ "_dom_classes": [],
1108
  "_model_module": "@jupyter-widgets/controls",
1109
  "_model_module_version": "1.5.0",
1110
+ "_model_name": "HTMLModel",
1111
  "_view_count": null,
1112
+ "_view_module": "@jupyter-widgets/controls",
1113
+ "_view_module_version": "1.5.0",
1114
+ "_view_name": "HTMLView",
1115
+ "description": "",
1116
+ "description_tooltip": null,
1117
+ "layout": "IPY_MODEL_1708f929db494251b19de5d0322ff26d",
1118
+ "placeholder": "​",
1119
+ "style": "IPY_MODEL_2751b58cfcc84215aabfc45de27b77b3",
1120
+ "value": "Fetching 1 files: 100%"
1121
  }
1122
  },
1123
+ "a5e99e6026f24c408cca741c6fc2509c": {
1124
+ "model_module": "@jupyter-widgets/controls",
1125
+ "model_module_version": "1.5.0",
1126
+ "model_name": "HTMLModel",
1127
+ "state": {
1128
+ "_dom_classes": [],
1129
+ "_model_module": "@jupyter-widgets/controls",
1130
+ "_model_module_version": "1.5.0",
1131
+ "_model_name": "HTMLModel",
1132
+ "_view_count": null,
1133
+ "_view_module": "@jupyter-widgets/controls",
1134
+ "_view_module_version": "1.5.0",
1135
+ "_view_name": "HTMLView",
1136
+ "description": "",
1137
+ "description_tooltip": null,
1138
+ "layout": "IPY_MODEL_9d20bac626ef472f848d727d56afc98c",
1139
+ "placeholder": "​",
1140
+ "style": "IPY_MODEL_75490fa060524ef3bd675bb41a0c5eb3",
1141
+ "value": " 1/1 [00:00&lt;00:00, 35.90it/s]"
1142
+ }
1143
+ },
1144
+ "a9cb9e343b93467895741fff5f0db25d": {
1145
  "model_module": "@jupyter-widgets/base",
 
1146
  "model_module_version": "1.2.0",
1147
+ "model_name": "LayoutModel",
1148
  "state": {
1149
  "_model_module": "@jupyter-widgets/base",
1150
  "_model_module_version": "1.2.0",
 
1193
  "width": null
1194
  }
1195
  },
1196
+ "ca88cec6e0834e27990b8350b752c827": {
1197
  "model_module": "@jupyter-widgets/controls",
 
1198
  "model_module_version": "1.5.0",
1199
+ "model_name": "HTMLModel",
1200
+ "state": {
1201
+ "_dom_classes": [],
1202
+ "_model_module": "@jupyter-widgets/controls",
1203
+ "_model_module_version": "1.5.0",
1204
+ "_model_name": "HTMLModel",
1205
+ "_view_count": null,
1206
+ "_view_module": "@jupyter-widgets/controls",
1207
+ "_view_module_version": "1.5.0",
1208
+ "_view_name": "HTMLView",
1209
+ "description": "",
1210
+ "description_tooltip": null,
1211
+ "layout": "IPY_MODEL_866da5a8e421477c8089dbfa1bdcc812",
1212
+ "placeholder": "​",
1213
+ "style": "IPY_MODEL_66bbfff8db6146b2a7b922b1b590f1f9",
1214
+ "value": " 1/1 [00:00&lt;00:00, 36.62it/s]"
1215
+ }
1216
+ },
1217
+ "ccd9de576ca9430d9a8064a3a8e1347b": {
1218
+ "model_module": "@jupyter-widgets/controls",
1219
+ "model_module_version": "1.5.0",
1220
+ "model_name": "ProgressStyleModel",
1221
+ "state": {
1222
+ "_model_module": "@jupyter-widgets/controls",
1223
+ "_model_module_version": "1.5.0",
1224
+ "_model_name": "ProgressStyleModel",
1225
+ "_view_count": null,
1226
+ "_view_module": "@jupyter-widgets/base",
1227
+ "_view_module_version": "1.2.0",
1228
+ "_view_name": "StyleView",
1229
+ "bar_color": null,
1230
+ "description_width": ""
1231
+ }
1232
+ },
1233
+ "d9bf82bf03984146aadfa5441f89ea98": {
1234
+ "model_module": "@jupyter-widgets/controls",
1235
+ "model_module_version": "1.5.0",
1236
+ "model_name": "DescriptionStyleModel",
1237
  "state": {
1238
  "_model_module": "@jupyter-widgets/controls",
1239
  "_model_module_version": "1.5.0",
 
1250
  },
1251
  "nbformat": 4,
1252
  "nbformat_minor": 5
1253
+ }