Spaces:
Sleeping
Sleeping
faldeus0092
commited on
Commit
β’
90d5741
1
Parent(s):
669a5cb
edited notebook
Browse files- notebook.ipynb +369 -369
notebook.ipynb
CHANGED
@@ -69,7 +69,7 @@
|
|
69 |
"outputs": [],
|
70 |
"source": [
|
71 |
"# @title #### Student Identity\n",
|
72 |
-
"student_id = \"
|
73 |
"name = \"Gavin Bagus Kenzie Narain\" # @param {type:\"string\"}\n",
|
74 |
"drive_link = \"https://drive.google.com/drive/folders/1smdyFGocnCQq7Iex6ozGwW-BGq5K9Ffw?usp=sharing\" # @param {type:\"string\"}\n",
|
75 |
"assignment_id = \"00_text_portfolio_project\""
|
@@ -90,16 +90,16 @@
|
|
90 |
"execution_count": 5,
|
91 |
"id": "36c07e23-0280-467f-b0d2-44d966253bb4",
|
92 |
"metadata": {
|
93 |
-
"id": "36c07e23-0280-467f-b0d2-44d966253bb4",
|
94 |
"colab": {
|
95 |
"base_uri": "https://localhost:8080/"
|
96 |
},
|
|
|
97 |
"outputId": "117ef0a6-fc2f-40be-c661-3807fc5192ca"
|
98 |
},
|
99 |
"outputs": [
|
100 |
{
|
101 |
-
"output_type": "stream",
|
102 |
"name": "stdout",
|
|
|
103 |
"text": [
|
104 |
"Collecting rggrader\n",
|
105 |
" Downloading rggrader-0.1.6-py3-none-any.whl (2.5 kB)\n",
|
@@ -152,11 +152,8 @@
|
|
152 |
},
|
153 |
{
|
154 |
"cell_type": "code",
|
155 |
-
"
|
156 |
-
|
157 |
-
"config = {'max_new_tokens': 100, 'temperature': 0}\n",
|
158 |
-
"llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', model_file=\"mistral-7b-instruct-v0.1.Q4_K_M.gguf\", config=config)"
|
159 |
-
],
|
160 |
"metadata": {
|
161 |
"colab": {
|
162 |
"base_uri": "https://localhost:8080/",
|
@@ -189,41 +186,50 @@
|
|
189 |
"id": "vKiTNfz7z8Yv",
|
190 |
"outputId": "8b1c80a7-2aeb-4ce1-aab2-f235c001c78c"
|
191 |
},
|
192 |
-
"id": "vKiTNfz7z8Yv",
|
193 |
-
"execution_count": 1,
|
194 |
"outputs": [
|
195 |
{
|
196 |
-
"output_type": "display_data",
|
197 |
"data": {
|
198 |
-
"text/plain": [
|
199 |
-
"Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
|
200 |
-
],
|
201 |
"application/vnd.jupyter.widget-view+json": {
|
|
|
202 |
"version_major": 2,
|
203 |
-
"version_minor": 0
|
204 |
-
|
205 |
-
|
|
|
|
|
206 |
},
|
207 |
-
"metadata": {}
|
|
|
208 |
},
|
209 |
{
|
210 |
-
"output_type": "display_data",
|
211 |
"data": {
|
212 |
-
"text/plain": [
|
213 |
-
"Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
|
214 |
-
],
|
215 |
"application/vnd.jupyter.widget-view+json": {
|
|
|
216 |
"version_major": 2,
|
217 |
-
"version_minor": 0
|
218 |
-
|
219 |
-
|
|
|
|
|
220 |
},
|
221 |
-
"metadata": {}
|
|
|
222 |
}
|
|
|
|
|
|
|
|
|
|
|
223 |
]
|
224 |
},
|
225 |
{
|
226 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
"source": [
|
228 |
"from langchain import PromptTemplate, LLMChain\n",
|
229 |
"\n",
|
@@ -235,59 +241,52 @@
|
|
235 |
"\n",
|
236 |
"prompt = PromptTemplate(template=template, input_variables=[\"question\",\"context\"])\n",
|
237 |
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
238 |
-
]
|
239 |
-
"metadata": {
|
240 |
-
"id": "MNm_7_Z50LFu"
|
241 |
-
},
|
242 |
-
"id": "MNm_7_Z50LFu",
|
243 |
-
"execution_count": 2,
|
244 |
-
"outputs": []
|
245 |
},
|
246 |
{
|
247 |
"cell_type": "code",
|
248 |
-
"
|
249 |
-
|
250 |
-
],
|
251 |
"metadata": {
|
252 |
"id": "KzW-JFVVCe4U"
|
253 |
},
|
254 |
-
"
|
255 |
-
"
|
256 |
-
|
|
|
257 |
},
|
258 |
{
|
259 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
"source": [
|
261 |
"question_p = \"\"\"What is the date for announcement\"\"\"\n",
|
262 |
"response = llm_chain.run({\"question\":question_p,\"context\":context_p})\n",
|
263 |
"\n",
|
264 |
"response"
|
265 |
-
]
|
266 |
-
"metadata": {
|
267 |
-
"id": "83udgnzuCoIQ"
|
268 |
-
},
|
269 |
-
"id": "83udgnzuCoIQ",
|
270 |
-
"execution_count": null,
|
271 |
-
"outputs": []
|
272 |
},
|
273 |
{
|
274 |
"cell_type": "code",
|
275 |
-
"
|
276 |
-
|
277 |
-
"response = llm_chain.run({\"question\":question_p,\"context\":context_p})"
|
278 |
-
],
|
279 |
"metadata": {
|
280 |
"id": "w6Y9ZHVp89wa"
|
281 |
},
|
282 |
-
"
|
283 |
-
"
|
284 |
-
|
|
|
|
|
285 |
},
|
286 |
{
|
287 |
"cell_type": "code",
|
288 |
-
"
|
289 |
-
|
290 |
-
],
|
291 |
"metadata": {
|
292 |
"colab": {
|
293 |
"base_uri": "https://localhost:8080/",
|
@@ -296,72 +295,51 @@
|
|
296 |
"id": "s0PHieG69YhZ",
|
297 |
"outputId": "45a8543d-4eed-430e-c50d-f0015b8ba50a"
|
298 |
},
|
299 |
-
"id": "s0PHieG69YhZ",
|
300 |
-
"execution_count": 6,
|
301 |
"outputs": [
|
302 |
{
|
303 |
-
"output_type": "execute_result",
|
304 |
"data": {
|
305 |
-
"text/plain": [
|
306 |
-
"'The buyer is JSW Neo Energy and the seller is Mytrah Energy India Pvt Ltd.'"
|
307 |
-
],
|
308 |
"application/vnd.google.colaboratory.intrinsic+json": {
|
309 |
"type": "string"
|
310 |
-
}
|
|
|
|
|
|
|
311 |
},
|
|
|
312 |
"metadata": {},
|
313 |
-
"
|
314 |
}
|
|
|
|
|
|
|
315 |
]
|
316 |
},
|
317 |
{
|
318 |
"cell_type": "markdown",
|
319 |
-
"
|
320 |
-
"## Gradio"
|
321 |
-
],
|
322 |
"metadata": {
|
323 |
"id": "ibzXKDR--BR1"
|
324 |
},
|
325 |
-
"
|
|
|
|
|
326 |
},
|
327 |
{
|
328 |
"cell_type": "code",
|
329 |
-
"
|
330 |
-
|
331 |
-
],
|
332 |
"metadata": {
|
333 |
"id": "NFnnoSyr97s-"
|
334 |
},
|
335 |
-
"
|
336 |
-
"
|
337 |
-
|
|
|
338 |
},
|
339 |
{
|
340 |
"cell_type": "code",
|
341 |
-
"
|
342 |
-
|
343 |
-
"\n",
|
344 |
-
"def question_answer(context: str, question: str):\n",
|
345 |
-
" print(context, question)\n",
|
346 |
-
" response = llm_chain.run({\"question\":question, \"context\":context})\n",
|
347 |
-
" print(response)\n",
|
348 |
-
" return response\n",
|
349 |
-
"\n",
|
350 |
-
"theme = gr.themes.Default(\n",
|
351 |
-
" primary_hue=\"indigo\",\n",
|
352 |
-
" secondary_hue=\"pink\",\n",
|
353 |
-
" neutral_hue=\"slate\",\n",
|
354 |
-
")\n",
|
355 |
-
"\n",
|
356 |
-
"with gr.Blocks(theme=theme) as interface:\n",
|
357 |
-
" context = gr.Textbox(lines=5, placeholder=\"On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\", label=\"Context\")\n",
|
358 |
-
" question = gr.Textbox(placeholder=\"What company is buyer and seller here\", label=\"Question\")\n",
|
359 |
-
" answer = gr.Textbox(placeholder=\"Answer will be here\", label=\"Answer\")\n",
|
360 |
-
" ask_button = gr.Button(\"Ask (this might take a minute since it's using CPU)\")\n",
|
361 |
-
" ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
|
362 |
-
"\n",
|
363 |
-
"interface.launch(debug=True)"
|
364 |
-
],
|
365 |
"metadata": {
|
366 |
"colab": {
|
367 |
"base_uri": "https://localhost:8080/",
|
@@ -370,12 +348,10 @@
|
|
370 |
"id": "8JuL87Cj-Mkc",
|
371 |
"outputId": "1e6a264b-c783-4bf5-be8f-98a36ef1dd90"
|
372 |
},
|
373 |
-
"id": "8JuL87Cj-Mkc",
|
374 |
-
"execution_count": 4,
|
375 |
"outputs": [
|
376 |
{
|
377 |
-
"output_type": "stream",
|
378 |
"name": "stdout",
|
|
|
379 |
"text": [
|
380 |
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
381 |
"\n",
|
@@ -386,20 +362,20 @@
|
|
386 |
]
|
387 |
},
|
388 |
{
|
389 |
-
"output_type": "display_data",
|
390 |
"data": {
|
391 |
-
"text/plain": [
|
392 |
-
"<IPython.core.display.HTML object>"
|
393 |
-
],
|
394 |
"text/html": [
|
395 |
"<div><iframe src=\"https://92baaf0e9ff8456b6a.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
|
|
|
|
|
|
396 |
]
|
397 |
},
|
398 |
-
"metadata": {}
|
|
|
399 |
},
|
400 |
{
|
401 |
-
"output_type": "stream",
|
402 |
"name": "stdout",
|
|
|
403 |
"text": [
|
404 |
"James Webb Space Telescope detects quartz crystals in the atmosphere of exoplanet WASP-17b. What are found on the WASP-17b?\n",
|
405 |
"Quartz crystals in the atmosphere of WASP-17b.\n",
|
@@ -408,37 +384,67 @@
|
|
408 |
]
|
409 |
},
|
410 |
{
|
411 |
-
"output_type": "execute_result",
|
412 |
"data": {
|
413 |
"text/plain": []
|
414 |
},
|
|
|
415 |
"metadata": {},
|
416 |
-
"
|
417 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
]
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "markdown",
|
422 |
-
"
|
423 |
-
"![pin](https://media.discordapp.net/attachments/201349824300318721/1163850900838813746/image.png?ex=6541139e&is=652e9e9e&hm=a2213e8ae5b94786bb0661c94435a46885812c9eb532f56fc0270e789787b333&=&width=903&height=486)"
|
424 |
-
],
|
425 |
"metadata": {
|
426 |
"id": "1kOOTJkRGyxX"
|
427 |
},
|
428 |
-
"
|
|
|
|
|
429 |
},
|
430 |
{
|
431 |
"cell_type": "markdown",
|
432 |
-
"
|
433 |
-
"## To deploy on spaces"
|
434 |
-
],
|
435 |
"metadata": {
|
436 |
"id": "xMHp65tnEcm7"
|
437 |
},
|
438 |
-
"
|
|
|
|
|
439 |
},
|
440 |
{
|
441 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
"source": [
|
443 |
"import gradio as gr\n",
|
444 |
"from langchain.llms import CTransformers\n",
|
@@ -475,13 +481,7 @@
|
|
475 |
" ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
|
476 |
"\n",
|
477 |
"interface.launch(debug=True)"
|
478 |
-
]
|
479 |
-
"metadata": {
|
480 |
-
"id": "DGWZwlgVEegn"
|
481 |
-
},
|
482 |
-
"id": "DGWZwlgVEegn",
|
483 |
-
"execution_count": null,
|
484 |
-
"outputs": []
|
485 |
},
|
486 |
{
|
487 |
"cell_type": "markdown",
|
@@ -498,26 +498,26 @@
|
|
498 |
"execution_count": 7,
|
499 |
"id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
|
500 |
"metadata": {
|
501 |
-
"id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
|
502 |
"colab": {
|
503 |
"base_uri": "https://localhost:8080/",
|
504 |
"height": 35
|
505 |
},
|
|
|
506 |
"outputId": "72d04fb3-cffc-4647-d045-ee3d24e117cc"
|
507 |
},
|
508 |
"outputs": [
|
509 |
{
|
510 |
-
"output_type": "execute_result",
|
511 |
"data": {
|
512 |
-
"text/plain": [
|
513 |
-
"'Assignment successfully submitted'"
|
514 |
-
],
|
515 |
"application/vnd.google.colaboratory.intrinsic+json": {
|
516 |
"type": "string"
|
517 |
-
}
|
|
|
|
|
|
|
518 |
},
|
|
|
519 |
"metadata": {},
|
520 |
-
"
|
521 |
}
|
522 |
],
|
523 |
"source": [
|
@@ -538,6 +538,10 @@
|
|
538 |
}
|
539 |
],
|
540 |
"metadata": {
|
|
|
|
|
|
|
|
|
541 |
"kernelspec": {
|
542 |
"display_name": "Python 3 (ipykernel)",
|
543 |
"language": "python",
|
@@ -555,108 +559,16 @@
|
|
555 |
"pygments_lexer": "ipython3",
|
556 |
"version": "3.11.3"
|
557 |
},
|
558 |
-
"colab": {
|
559 |
-
"provenance": [],
|
560 |
-
"toc_visible": true
|
561 |
-
},
|
562 |
"widgets": {
|
563 |
"application/vnd.jupyter.widget-state+json": {
|
564 |
-
"
|
565 |
-
"model_module": "@jupyter-widgets/
|
566 |
-
"
|
567 |
-
"
|
568 |
-
"state": {
|
569 |
-
"_dom_classes": [],
|
570 |
-
"_model_module": "@jupyter-widgets/controls",
|
571 |
-
"_model_module_version": "1.5.0",
|
572 |
-
"_model_name": "HBoxModel",
|
573 |
-
"_view_count": null,
|
574 |
-
"_view_module": "@jupyter-widgets/controls",
|
575 |
-
"_view_module_version": "1.5.0",
|
576 |
-
"_view_name": "HBoxView",
|
577 |
-
"box_style": "",
|
578 |
-
"children": [
|
579 |
-
"IPY_MODEL_a1595618ab5f48e08a7c9a6a0879ad26",
|
580 |
-
"IPY_MODEL_4912fec232b44537a80c52b04291fe7b",
|
581 |
-
"IPY_MODEL_ca88cec6e0834e27990b8350b752c827"
|
582 |
-
],
|
583 |
-
"layout": "IPY_MODEL_5ba1c94eddd24e2aae5b25d9d6884dc0"
|
584 |
-
}
|
585 |
-
},
|
586 |
-
"a1595618ab5f48e08a7c9a6a0879ad26": {
|
587 |
-
"model_module": "@jupyter-widgets/controls",
|
588 |
-
"model_name": "HTMLModel",
|
589 |
-
"model_module_version": "1.5.0",
|
590 |
"state": {
|
591 |
-
"
|
592 |
-
"
|
593 |
-
"
|
594 |
-
"_model_name": "HTMLModel",
|
595 |
-
"_view_count": null,
|
596 |
-
"_view_module": "@jupyter-widgets/controls",
|
597 |
-
"_view_module_version": "1.5.0",
|
598 |
-
"_view_name": "HTMLView",
|
599 |
-
"description": "",
|
600 |
-
"description_tooltip": null,
|
601 |
-
"layout": "IPY_MODEL_1708f929db494251b19de5d0322ff26d",
|
602 |
-
"placeholder": "β",
|
603 |
-
"style": "IPY_MODEL_2751b58cfcc84215aabfc45de27b77b3",
|
604 |
-
"value": "Fetching 1 files: 100%"
|
605 |
-
}
|
606 |
-
},
|
607 |
-
"4912fec232b44537a80c52b04291fe7b": {
|
608 |
-
"model_module": "@jupyter-widgets/controls",
|
609 |
-
"model_name": "FloatProgressModel",
|
610 |
-
"model_module_version": "1.5.0",
|
611 |
-
"state": {
|
612 |
-
"_dom_classes": [],
|
613 |
-
"_model_module": "@jupyter-widgets/controls",
|
614 |
-
"_model_module_version": "1.5.0",
|
615 |
-
"_model_name": "FloatProgressModel",
|
616 |
-
"_view_count": null,
|
617 |
-
"_view_module": "@jupyter-widgets/controls",
|
618 |
-
"_view_module_version": "1.5.0",
|
619 |
-
"_view_name": "ProgressView",
|
620 |
-
"bar_style": "success",
|
621 |
-
"description": "",
|
622 |
-
"description_tooltip": null,
|
623 |
-
"layout": "IPY_MODEL_38895ca8e4f749838b071b724cc39b46",
|
624 |
-
"max": 1,
|
625 |
-
"min": 0,
|
626 |
-
"orientation": "horizontal",
|
627 |
-
"style": "IPY_MODEL_55b8641523d84c15bea6b35f04c554fc",
|
628 |
-
"value": 1
|
629 |
-
}
|
630 |
-
},
|
631 |
-
"ca88cec6e0834e27990b8350b752c827": {
|
632 |
-
"model_module": "@jupyter-widgets/controls",
|
633 |
-
"model_name": "HTMLModel",
|
634 |
-
"model_module_version": "1.5.0",
|
635 |
-
"state": {
|
636 |
-
"_dom_classes": [],
|
637 |
-
"_model_module": "@jupyter-widgets/controls",
|
638 |
-
"_model_module_version": "1.5.0",
|
639 |
-
"_model_name": "HTMLModel",
|
640 |
-
"_view_count": null,
|
641 |
-
"_view_module": "@jupyter-widgets/controls",
|
642 |
-
"_view_module_version": "1.5.0",
|
643 |
-
"_view_name": "HTMLView",
|
644 |
-
"description": "",
|
645 |
-
"description_tooltip": null,
|
646 |
-
"layout": "IPY_MODEL_866da5a8e421477c8089dbfa1bdcc812",
|
647 |
-
"placeholder": "β",
|
648 |
-
"style": "IPY_MODEL_66bbfff8db6146b2a7b922b1b590f1f9",
|
649 |
-
"value": " 1/1 [00:00<00:00, 36.62it/s]"
|
650 |
-
}
|
651 |
-
},
|
652 |
-
"5ba1c94eddd24e2aae5b25d9d6884dc0": {
|
653 |
-
"model_module": "@jupyter-widgets/base",
|
654 |
-
"model_name": "LayoutModel",
|
655 |
-
"model_module_version": "1.2.0",
|
656 |
-
"state": {
|
657 |
-
"_model_module": "@jupyter-widgets/base",
|
658 |
-
"_model_module_version": "1.2.0",
|
659 |
-
"_model_name": "LayoutModel",
|
660 |
"_view_count": null,
|
661 |
"_view_module": "@jupyter-widgets/base",
|
662 |
"_view_module_version": "1.2.0",
|
@@ -701,10 +613,32 @@
|
|
701 |
"width": null
|
702 |
}
|
703 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
"1708f929db494251b19de5d0322ff26d": {
|
705 |
"model_module": "@jupyter-widgets/base",
|
706 |
-
"model_name": "LayoutModel",
|
707 |
"model_module_version": "1.2.0",
|
|
|
708 |
"state": {
|
709 |
"_model_module": "@jupyter-widgets/base",
|
710 |
"_model_module_version": "1.2.0",
|
@@ -753,93 +687,49 @@
|
|
753 |
"width": null
|
754 |
}
|
755 |
},
|
756 |
-
"
|
757 |
"model_module": "@jupyter-widgets/controls",
|
758 |
-
"model_name": "DescriptionStyleModel",
|
759 |
"model_module_version": "1.5.0",
|
|
|
760 |
"state": {
|
|
|
761 |
"_model_module": "@jupyter-widgets/controls",
|
762 |
"_model_module_version": "1.5.0",
|
763 |
-
"_model_name": "
|
764 |
-
"_view_count": null,
|
765 |
-
"_view_module": "@jupyter-widgets/base",
|
766 |
-
"_view_module_version": "1.2.0",
|
767 |
-
"_view_name": "StyleView",
|
768 |
-
"description_width": ""
|
769 |
-
}
|
770 |
-
},
|
771 |
-
"38895ca8e4f749838b071b724cc39b46": {
|
772 |
-
"model_module": "@jupyter-widgets/base",
|
773 |
-
"model_name": "LayoutModel",
|
774 |
-
"model_module_version": "1.2.0",
|
775 |
-
"state": {
|
776 |
-
"_model_module": "@jupyter-widgets/base",
|
777 |
-
"_model_module_version": "1.2.0",
|
778 |
-
"_model_name": "LayoutModel",
|
779 |
"_view_count": null,
|
780 |
-
"_view_module": "@jupyter-widgets/
|
781 |
-
"_view_module_version": "1.
|
782 |
-
"_view_name": "
|
783 |
-
"
|
784 |
-
"
|
785 |
-
"
|
786 |
-
"
|
787 |
-
"
|
788 |
-
"
|
789 |
-
"
|
790 |
-
"
|
791 |
-
"
|
792 |
-
"grid_auto_columns": null,
|
793 |
-
"grid_auto_flow": null,
|
794 |
-
"grid_auto_rows": null,
|
795 |
-
"grid_column": null,
|
796 |
-
"grid_gap": null,
|
797 |
-
"grid_row": null,
|
798 |
-
"grid_template_areas": null,
|
799 |
-
"grid_template_columns": null,
|
800 |
-
"grid_template_rows": null,
|
801 |
-
"height": null,
|
802 |
-
"justify_content": null,
|
803 |
-
"justify_items": null,
|
804 |
-
"left": null,
|
805 |
-
"margin": null,
|
806 |
-
"max_height": null,
|
807 |
-
"max_width": null,
|
808 |
-
"min_height": null,
|
809 |
-
"min_width": null,
|
810 |
-
"object_fit": null,
|
811 |
-
"object_position": null,
|
812 |
-
"order": null,
|
813 |
-
"overflow": null,
|
814 |
-
"overflow_x": null,
|
815 |
-
"overflow_y": null,
|
816 |
-
"padding": null,
|
817 |
-
"right": null,
|
818 |
-
"top": null,
|
819 |
-
"visibility": null,
|
820 |
-
"width": null
|
821 |
}
|
822 |
},
|
823 |
-
"
|
824 |
"model_module": "@jupyter-widgets/controls",
|
825 |
-
"model_name": "ProgressStyleModel",
|
826 |
"model_module_version": "1.5.0",
|
|
|
827 |
"state": {
|
828 |
"_model_module": "@jupyter-widgets/controls",
|
829 |
"_model_module_version": "1.5.0",
|
830 |
-
"_model_name": "
|
831 |
"_view_count": null,
|
832 |
"_view_module": "@jupyter-widgets/base",
|
833 |
"_view_module_version": "1.2.0",
|
834 |
"_view_name": "StyleView",
|
835 |
-
"bar_color": null,
|
836 |
"description_width": ""
|
837 |
}
|
838 |
},
|
839 |
-
"
|
840 |
"model_module": "@jupyter-widgets/base",
|
841 |
-
"model_name": "LayoutModel",
|
842 |
"model_module_version": "1.2.0",
|
|
|
843 |
"state": {
|
844 |
"_model_module": "@jupyter-widgets/base",
|
845 |
"_model_module_version": "1.2.0",
|
@@ -888,25 +778,34 @@
|
|
888 |
"width": null
|
889 |
}
|
890 |
},
|
891 |
-
"
|
892 |
"model_module": "@jupyter-widgets/controls",
|
893 |
-
"model_name": "DescriptionStyleModel",
|
894 |
"model_module_version": "1.5.0",
|
|
|
895 |
"state": {
|
|
|
896 |
"_model_module": "@jupyter-widgets/controls",
|
897 |
"_model_module_version": "1.5.0",
|
898 |
-
"_model_name": "
|
899 |
"_view_count": null,
|
900 |
-
"_view_module": "@jupyter-widgets/
|
901 |
-
"_view_module_version": "1.
|
902 |
-
"_view_name": "
|
903 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
}
|
905 |
},
|
906 |
-
"
|
907 |
"model_module": "@jupyter-widgets/controls",
|
908 |
-
"model_name": "HBoxModel",
|
909 |
"model_module_version": "1.5.0",
|
|
|
910 |
"state": {
|
911 |
"_dom_classes": [],
|
912 |
"_model_module": "@jupyter-widgets/controls",
|
@@ -918,62 +817,33 @@
|
|
918 |
"_view_name": "HBoxView",
|
919 |
"box_style": "",
|
920 |
"children": [
|
921 |
-
"
|
922 |
-
"
|
923 |
-
"
|
924 |
],
|
925 |
-
"layout": "
|
926 |
}
|
927 |
},
|
928 |
-
"
|
929 |
"model_module": "@jupyter-widgets/controls",
|
930 |
-
"model_name": "HTMLModel",
|
931 |
"model_module_version": "1.5.0",
|
|
|
932 |
"state": {
|
933 |
-
"_dom_classes": [],
|
934 |
"_model_module": "@jupyter-widgets/controls",
|
935 |
"_model_module_version": "1.5.0",
|
936 |
-
"_model_name": "
|
937 |
"_view_count": null,
|
938 |
-
"_view_module": "@jupyter-widgets/
|
939 |
-
"_view_module_version": "1.
|
940 |
-
"_view_name": "
|
941 |
-
"
|
942 |
-
"
|
943 |
-
"layout": "IPY_MODEL_a9cb9e343b93467895741fff5f0db25d",
|
944 |
-
"placeholder": "β",
|
945 |
-
"style": "IPY_MODEL_d9bf82bf03984146aadfa5441f89ea98",
|
946 |
-
"value": "Fetching 1 files: 100%"
|
947 |
}
|
948 |
},
|
949 |
-
"
|
950 |
"model_module": "@jupyter-widgets/controls",
|
951 |
-
"model_name": "FloatProgressModel",
|
952 |
"model_module_version": "1.5.0",
|
953 |
-
"state": {
|
954 |
-
"_dom_classes": [],
|
955 |
-
"_model_module": "@jupyter-widgets/controls",
|
956 |
-
"_model_module_version": "1.5.0",
|
957 |
-
"_model_name": "FloatProgressModel",
|
958 |
-
"_view_count": null,
|
959 |
-
"_view_module": "@jupyter-widgets/controls",
|
960 |
-
"_view_module_version": "1.5.0",
|
961 |
-
"_view_name": "ProgressView",
|
962 |
-
"bar_style": "success",
|
963 |
-
"description": "",
|
964 |
-
"description_tooltip": null,
|
965 |
-
"layout": "IPY_MODEL_5adcafc9d6f84ca9ae372ee9295cd944",
|
966 |
-
"max": 1,
|
967 |
-
"min": 0,
|
968 |
-
"orientation": "horizontal",
|
969 |
-
"style": "IPY_MODEL_ccd9de576ca9430d9a8064a3a8e1347b",
|
970 |
-
"value": 1
|
971 |
-
}
|
972 |
-
},
|
973 |
-
"a5e99e6026f24c408cca741c6fc2509c": {
|
974 |
-
"model_module": "@jupyter-widgets/controls",
|
975 |
"model_name": "HTMLModel",
|
976 |
-
"model_module_version": "1.5.0",
|
977 |
"state": {
|
978 |
"_dom_classes": [],
|
979 |
"_model_module": "@jupyter-widgets/controls",
|
@@ -985,16 +855,16 @@
|
|
985 |
"_view_name": "HTMLView",
|
986 |
"description": "",
|
987 |
"description_tooltip": null,
|
988 |
-
"layout": "
|
989 |
"placeholder": "β",
|
990 |
-
"style": "
|
991 |
-
"value": " 1
|
992 |
}
|
993 |
},
|
994 |
-
"
|
995 |
"model_module": "@jupyter-widgets/base",
|
996 |
-
"model_name": "LayoutModel",
|
997 |
"model_module_version": "1.2.0",
|
|
|
998 |
"state": {
|
999 |
"_model_module": "@jupyter-widgets/base",
|
1000 |
"_model_module_version": "1.2.0",
|
@@ -1043,10 +913,10 @@
|
|
1043 |
"width": null
|
1044 |
}
|
1045 |
},
|
1046 |
-
"
|
1047 |
"model_module": "@jupyter-widgets/base",
|
1048 |
-
"model_name": "LayoutModel",
|
1049 |
"model_module_version": "1.2.0",
|
|
|
1050 |
"state": {
|
1051 |
"_model_module": "@jupyter-widgets/base",
|
1052 |
"_model_module_version": "1.2.0",
|
@@ -1095,10 +965,25 @@
|
|
1095 |
"width": null
|
1096 |
}
|
1097 |
},
|
1098 |
-
"
|
1099 |
"model_module": "@jupyter-widgets/controls",
|
|
|
1100 |
"model_name": "DescriptionStyleModel",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1101 |
"model_module_version": "1.5.0",
|
|
|
1102 |
"state": {
|
1103 |
"_model_module": "@jupyter-widgets/controls",
|
1104 |
"_model_module_version": "1.5.0",
|
@@ -1110,10 +995,62 @@
|
|
1110 |
"description_width": ""
|
1111 |
}
|
1112 |
},
|
1113 |
-
"
|
1114 |
"model_module": "@jupyter-widgets/base",
|
|
|
1115 |
"model_name": "LayoutModel",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1116 |
"model_module_version": "1.2.0",
|
|
|
1117 |
"state": {
|
1118 |
"_model_module": "@jupyter-widgets/base",
|
1119 |
"_model_module_version": "1.2.0",
|
@@ -1162,26 +1099,52 @@
|
|
1162 |
"width": null
|
1163 |
}
|
1164 |
},
|
1165 |
-
"
|
1166 |
"model_module": "@jupyter-widgets/controls",
|
1167 |
-
"model_name": "ProgressStyleModel",
|
1168 |
"model_module_version": "1.5.0",
|
|
|
1169 |
"state": {
|
|
|
1170 |
"_model_module": "@jupyter-widgets/controls",
|
1171 |
"_model_module_version": "1.5.0",
|
1172 |
-
"_model_name": "
|
1173 |
"_view_count": null,
|
1174 |
-
"_view_module": "@jupyter-widgets/
|
1175 |
-
"_view_module_version": "1.
|
1176 |
-
"_view_name": "
|
1177 |
-
"
|
1178 |
-
"
|
|
|
|
|
|
|
|
|
1179 |
}
|
1180 |
},
|
1181 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1182 |
"model_module": "@jupyter-widgets/base",
|
1183 |
-
"model_name": "LayoutModel",
|
1184 |
"model_module_version": "1.2.0",
|
|
|
1185 |
"state": {
|
1186 |
"_model_module": "@jupyter-widgets/base",
|
1187 |
"_model_module_version": "1.2.0",
|
@@ -1230,10 +1193,47 @@
|
|
1230 |
"width": null
|
1231 |
}
|
1232 |
},
|
1233 |
-
"
|
1234 |
"model_module": "@jupyter-widgets/controls",
|
1235 |
-
"model_name": "DescriptionStyleModel",
|
1236 |
"model_module_version": "1.5.0",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1237 |
"state": {
|
1238 |
"_model_module": "@jupyter-widgets/controls",
|
1239 |
"_model_module_version": "1.5.0",
|
@@ -1250,4 +1250,4 @@
|
|
1250 |
},
|
1251 |
"nbformat": 4,
|
1252 |
"nbformat_minor": 5
|
1253 |
-
}
|
|
|
69 |
"outputs": [],
|
70 |
"source": [
|
71 |
"# @title #### Student Identity\n",
|
72 |
+
"student_id = \"\" # @param {type:\"string\"}\n",
|
73 |
"name = \"Gavin Bagus Kenzie Narain\" # @param {type:\"string\"}\n",
|
74 |
"drive_link = \"https://drive.google.com/drive/folders/1smdyFGocnCQq7Iex6ozGwW-BGq5K9Ffw?usp=sharing\" # @param {type:\"string\"}\n",
|
75 |
"assignment_id = \"00_text_portfolio_project\""
|
|
|
90 |
"execution_count": 5,
|
91 |
"id": "36c07e23-0280-467f-b0d2-44d966253bb4",
|
92 |
"metadata": {
|
|
|
93 |
"colab": {
|
94 |
"base_uri": "https://localhost:8080/"
|
95 |
},
|
96 |
+
"id": "36c07e23-0280-467f-b0d2-44d966253bb4",
|
97 |
"outputId": "117ef0a6-fc2f-40be-c661-3807fc5192ca"
|
98 |
},
|
99 |
"outputs": [
|
100 |
{
|
|
|
101 |
"name": "stdout",
|
102 |
+
"output_type": "stream",
|
103 |
"text": [
|
104 |
"Collecting rggrader\n",
|
105 |
" Downloading rggrader-0.1.6-py3-none-any.whl (2.5 kB)\n",
|
|
|
152 |
},
|
153 |
{
|
154 |
"cell_type": "code",
|
155 |
+
"execution_count": 1,
|
156 |
+
"id": "vKiTNfz7z8Yv",
|
|
|
|
|
|
|
157 |
"metadata": {
|
158 |
"colab": {
|
159 |
"base_uri": "https://localhost:8080/",
|
|
|
186 |
"id": "vKiTNfz7z8Yv",
|
187 |
"outputId": "8b1c80a7-2aeb-4ce1-aab2-f235c001c78c"
|
188 |
},
|
|
|
|
|
189 |
"outputs": [
|
190 |
{
|
|
|
191 |
"data": {
|
|
|
|
|
|
|
192 |
"application/vnd.jupyter.widget-view+json": {
|
193 |
+
"model_id": "54c0e2e43d27482f9dcb67ce9d60c85c",
|
194 |
"version_major": 2,
|
195 |
+
"version_minor": 0
|
196 |
+
},
|
197 |
+
"text/plain": [
|
198 |
+
"Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
|
199 |
+
]
|
200 |
},
|
201 |
+
"metadata": {},
|
202 |
+
"output_type": "display_data"
|
203 |
},
|
204 |
{
|
|
|
205 |
"data": {
|
|
|
|
|
|
|
206 |
"application/vnd.jupyter.widget-view+json": {
|
207 |
+
"model_id": "0b7b4570dc944e818348db1ce6954e3a",
|
208 |
"version_major": 2,
|
209 |
+
"version_minor": 0
|
210 |
+
},
|
211 |
+
"text/plain": [
|
212 |
+
"Fetching 1 files: 0%| | 0/1 [00:00<?, ?it/s]"
|
213 |
+
]
|
214 |
},
|
215 |
+
"metadata": {},
|
216 |
+
"output_type": "display_data"
|
217 |
}
|
218 |
+
],
|
219 |
+
"source": [
|
220 |
+
"from langchain.llms import CTransformers\n",
|
221 |
+
"config = {'max_new_tokens': 100, 'temperature': 0}\n",
|
222 |
+
"llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', model_file=\"mistral-7b-instruct-v0.1.Q4_K_M.gguf\", config=config)"
|
223 |
]
|
224 |
},
|
225 |
{
|
226 |
"cell_type": "code",
|
227 |
+
"execution_count": 2,
|
228 |
+
"id": "MNm_7_Z50LFu",
|
229 |
+
"metadata": {
|
230 |
+
"id": "MNm_7_Z50LFu"
|
231 |
+
},
|
232 |
+
"outputs": [],
|
233 |
"source": [
|
234 |
"from langchain import PromptTemplate, LLMChain\n",
|
235 |
"\n",
|
|
|
241 |
"\n",
|
242 |
"prompt = PromptTemplate(template=template, input_variables=[\"question\",\"context\"])\n",
|
243 |
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
244 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
},
|
246 |
{
|
247 |
"cell_type": "code",
|
248 |
+
"execution_count": 4,
|
249 |
+
"id": "KzW-JFVVCe4U",
|
|
|
250 |
"metadata": {
|
251 |
"id": "KzW-JFVVCe4U"
|
252 |
},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"context_p = \"\"\" On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\"\"\"\n"
|
256 |
+
]
|
257 |
},
|
258 |
{
|
259 |
"cell_type": "code",
|
260 |
+
"execution_count": null,
|
261 |
+
"id": "83udgnzuCoIQ",
|
262 |
+
"metadata": {
|
263 |
+
"id": "83udgnzuCoIQ"
|
264 |
+
},
|
265 |
+
"outputs": [],
|
266 |
"source": [
|
267 |
"question_p = \"\"\"What is the date for announcement\"\"\"\n",
|
268 |
"response = llm_chain.run({\"question\":question_p,\"context\":context_p})\n",
|
269 |
"\n",
|
270 |
"response"
|
271 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
},
|
273 |
{
|
274 |
"cell_type": "code",
|
275 |
+
"execution_count": 5,
|
276 |
+
"id": "w6Y9ZHVp89wa",
|
|
|
|
|
277 |
"metadata": {
|
278 |
"id": "w6Y9ZHVp89wa"
|
279 |
},
|
280 |
+
"outputs": [],
|
281 |
+
"source": [
|
282 |
+
"question_p = \"\"\"What company is buyer and seller here\"\"\"\n",
|
283 |
+
"response = llm_chain.run({\"question\":question_p,\"context\":context_p})"
|
284 |
+
]
|
285 |
},
|
286 |
{
|
287 |
"cell_type": "code",
|
288 |
+
"execution_count": 6,
|
289 |
+
"id": "s0PHieG69YhZ",
|
|
|
290 |
"metadata": {
|
291 |
"colab": {
|
292 |
"base_uri": "https://localhost:8080/",
|
|
|
295 |
"id": "s0PHieG69YhZ",
|
296 |
"outputId": "45a8543d-4eed-430e-c50d-f0015b8ba50a"
|
297 |
},
|
|
|
|
|
298 |
"outputs": [
|
299 |
{
|
|
|
300 |
"data": {
|
|
|
|
|
|
|
301 |
"application/vnd.google.colaboratory.intrinsic+json": {
|
302 |
"type": "string"
|
303 |
+
},
|
304 |
+
"text/plain": [
|
305 |
+
"'The buyer is JSW Neo Energy and the seller is Mytrah Energy India Pvt Ltd.'"
|
306 |
+
]
|
307 |
},
|
308 |
+
"execution_count": 6,
|
309 |
"metadata": {},
|
310 |
+
"output_type": "execute_result"
|
311 |
}
|
312 |
+
],
|
313 |
+
"source": [
|
314 |
+
"response"
|
315 |
]
|
316 |
},
|
317 |
{
|
318 |
"cell_type": "markdown",
|
319 |
+
"id": "ibzXKDR--BR1",
|
|
|
|
|
320 |
"metadata": {
|
321 |
"id": "ibzXKDR--BR1"
|
322 |
},
|
323 |
+
"source": [
|
324 |
+
"## Gradio"
|
325 |
+
]
|
326 |
},
|
327 |
{
|
328 |
"cell_type": "code",
|
329 |
+
"execution_count": null,
|
330 |
+
"id": "NFnnoSyr97s-",
|
|
|
331 |
"metadata": {
|
332 |
"id": "NFnnoSyr97s-"
|
333 |
},
|
334 |
+
"outputs": [],
|
335 |
+
"source": [
|
336 |
+
"!pip -q install gradio"
|
337 |
+
]
|
338 |
},
|
339 |
{
|
340 |
"cell_type": "code",
|
341 |
+
"execution_count": 4,
|
342 |
+
"id": "8JuL87Cj-Mkc",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
"metadata": {
|
344 |
"colab": {
|
345 |
"base_uri": "https://localhost:8080/",
|
|
|
348 |
"id": "8JuL87Cj-Mkc",
|
349 |
"outputId": "1e6a264b-c783-4bf5-be8f-98a36ef1dd90"
|
350 |
},
|
|
|
|
|
351 |
"outputs": [
|
352 |
{
|
|
|
353 |
"name": "stdout",
|
354 |
+
"output_type": "stream",
|
355 |
"text": [
|
356 |
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
357 |
"\n",
|
|
|
362 |
]
|
363 |
},
|
364 |
{
|
|
|
365 |
"data": {
|
|
|
|
|
|
|
366 |
"text/html": [
|
367 |
"<div><iframe src=\"https://92baaf0e9ff8456b6a.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
368 |
+
],
|
369 |
+
"text/plain": [
|
370 |
+
"<IPython.core.display.HTML object>"
|
371 |
]
|
372 |
},
|
373 |
+
"metadata": {},
|
374 |
+
"output_type": "display_data"
|
375 |
},
|
376 |
{
|
|
|
377 |
"name": "stdout",
|
378 |
+
"output_type": "stream",
|
379 |
"text": [
|
380 |
"James Webb Space Telescope detects quartz crystals in the atmosphere of exoplanet WASP-17b. What are found on the WASP-17b?\n",
|
381 |
"Quartz crystals in the atmosphere of WASP-17b.\n",
|
|
|
384 |
]
|
385 |
},
|
386 |
{
|
|
|
387 |
"data": {
|
388 |
"text/plain": []
|
389 |
},
|
390 |
+
"execution_count": 4,
|
391 |
"metadata": {},
|
392 |
+
"output_type": "execute_result"
|
393 |
}
|
394 |
+
],
|
395 |
+
"source": [
|
396 |
+
"import gradio as gr\n",
|
397 |
+
"\n",
|
398 |
+
"def question_answer(context: str, question: str):\n",
|
399 |
+
" print(context, question)\n",
|
400 |
+
" response = llm_chain.run({\"question\":question, \"context\":context})\n",
|
401 |
+
" print(response)\n",
|
402 |
+
" return response\n",
|
403 |
+
"\n",
|
404 |
+
"theme = gr.themes.Default(\n",
|
405 |
+
" primary_hue=\"indigo\",\n",
|
406 |
+
" secondary_hue=\"pink\",\n",
|
407 |
+
" neutral_hue=\"slate\",\n",
|
408 |
+
")\n",
|
409 |
+
"\n",
|
410 |
+
"with gr.Blocks(theme=theme) as interface:\n",
|
411 |
+
" context = gr.Textbox(lines=5, placeholder=\"On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.\", label=\"Context\")\n",
|
412 |
+
" question = gr.Textbox(placeholder=\"What company is buyer and seller here\", label=\"Question\")\n",
|
413 |
+
" answer = gr.Textbox(placeholder=\"Answer will be here\", label=\"Answer\")\n",
|
414 |
+
" ask_button = gr.Button(\"Ask (this might take a minute since it's using CPU)\")\n",
|
415 |
+
" ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
|
416 |
+
"\n",
|
417 |
+
"interface.launch(debug=True)"
|
418 |
]
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "markdown",
|
422 |
+
"id": "1kOOTJkRGyxX",
|
|
|
|
|
423 |
"metadata": {
|
424 |
"id": "1kOOTJkRGyxX"
|
425 |
},
|
426 |
+
"source": [
|
427 |
+
"![pin](https://media.discordapp.net/attachments/201349824300318721/1163850900838813746/image.png?ex=6541139e&is=652e9e9e&hm=a2213e8ae5b94786bb0661c94435a46885812c9eb532f56fc0270e789787b333&=&width=903&height=486)"
|
428 |
+
]
|
429 |
},
|
430 |
{
|
431 |
"cell_type": "markdown",
|
432 |
+
"id": "xMHp65tnEcm7",
|
|
|
|
|
433 |
"metadata": {
|
434 |
"id": "xMHp65tnEcm7"
|
435 |
},
|
436 |
+
"source": [
|
437 |
+
"## To deploy on spaces"
|
438 |
+
]
|
439 |
},
|
440 |
{
|
441 |
"cell_type": "code",
|
442 |
+
"execution_count": null,
|
443 |
+
"id": "DGWZwlgVEegn",
|
444 |
+
"metadata": {
|
445 |
+
"id": "DGWZwlgVEegn"
|
446 |
+
},
|
447 |
+
"outputs": [],
|
448 |
"source": [
|
449 |
"import gradio as gr\n",
|
450 |
"from langchain.llms import CTransformers\n",
|
|
|
481 |
" ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer)\n",
|
482 |
"\n",
|
483 |
"interface.launch(debug=True)"
|
484 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
},
|
486 |
{
|
487 |
"cell_type": "markdown",
|
|
|
498 |
"execution_count": 7,
|
499 |
"id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
|
500 |
"metadata": {
|
|
|
501 |
"colab": {
|
502 |
"base_uri": "https://localhost:8080/",
|
503 |
"height": 35
|
504 |
},
|
505 |
+
"id": "ced6b581-708f-4758-86ff-3cd51bf14f99",
|
506 |
"outputId": "72d04fb3-cffc-4647-d045-ee3d24e117cc"
|
507 |
},
|
508 |
"outputs": [
|
509 |
{
|
|
|
510 |
"data": {
|
|
|
|
|
|
|
511 |
"application/vnd.google.colaboratory.intrinsic+json": {
|
512 |
"type": "string"
|
513 |
+
},
|
514 |
+
"text/plain": [
|
515 |
+
"'Assignment successfully submitted'"
|
516 |
+
]
|
517 |
},
|
518 |
+
"execution_count": 7,
|
519 |
"metadata": {},
|
520 |
+
"output_type": "execute_result"
|
521 |
}
|
522 |
],
|
523 |
"source": [
|
|
|
538 |
}
|
539 |
],
|
540 |
"metadata": {
|
541 |
+
"colab": {
|
542 |
+
"provenance": [],
|
543 |
+
"toc_visible": true
|
544 |
+
},
|
545 |
"kernelspec": {
|
546 |
"display_name": "Python 3 (ipykernel)",
|
547 |
"language": "python",
|
|
|
559 |
"pygments_lexer": "ipython3",
|
560 |
"version": "3.11.3"
|
561 |
},
|
|
|
|
|
|
|
|
|
562 |
"widgets": {
|
563 |
"application/vnd.jupyter.widget-state+json": {
|
564 |
+
"095fd8b26865435589b2e79e12ecef24": {
|
565 |
+
"model_module": "@jupyter-widgets/base",
|
566 |
+
"model_module_version": "1.2.0",
|
567 |
+
"model_name": "LayoutModel",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
"state": {
|
569 |
+
"_model_module": "@jupyter-widgets/base",
|
570 |
+
"_model_module_version": "1.2.0",
|
571 |
+
"_model_name": "LayoutModel",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
"_view_count": null,
|
573 |
"_view_module": "@jupyter-widgets/base",
|
574 |
"_view_module_version": "1.2.0",
|
|
|
613 |
"width": null
|
614 |
}
|
615 |
},
|
616 |
+
"0b7b4570dc944e818348db1ce6954e3a": {
|
617 |
+
"model_module": "@jupyter-widgets/controls",
|
618 |
+
"model_module_version": "1.5.0",
|
619 |
+
"model_name": "HBoxModel",
|
620 |
+
"state": {
|
621 |
+
"_dom_classes": [],
|
622 |
+
"_model_module": "@jupyter-widgets/controls",
|
623 |
+
"_model_module_version": "1.5.0",
|
624 |
+
"_model_name": "HBoxModel",
|
625 |
+
"_view_count": null,
|
626 |
+
"_view_module": "@jupyter-widgets/controls",
|
627 |
+
"_view_module_version": "1.5.0",
|
628 |
+
"_view_name": "HBoxView",
|
629 |
+
"box_style": "",
|
630 |
+
"children": [
|
631 |
+
"IPY_MODEL_580648891bde443786cf1b06070f846f",
|
632 |
+
"IPY_MODEL_24e964fbe9044395a3bce8b1a83a05de",
|
633 |
+
"IPY_MODEL_a5e99e6026f24c408cca741c6fc2509c"
|
634 |
+
],
|
635 |
+
"layout": "IPY_MODEL_095fd8b26865435589b2e79e12ecef24"
|
636 |
+
}
|
637 |
+
},
|
638 |
"1708f929db494251b19de5d0322ff26d": {
|
639 |
"model_module": "@jupyter-widgets/base",
|
|
|
640 |
"model_module_version": "1.2.0",
|
641 |
+
"model_name": "LayoutModel",
|
642 |
"state": {
|
643 |
"_model_module": "@jupyter-widgets/base",
|
644 |
"_model_module_version": "1.2.0",
|
|
|
687 |
"width": null
|
688 |
}
|
689 |
},
|
690 |
+
"24e964fbe9044395a3bce8b1a83a05de": {
|
691 |
"model_module": "@jupyter-widgets/controls",
|
|
|
692 |
"model_module_version": "1.5.0",
|
693 |
+
"model_name": "FloatProgressModel",
|
694 |
"state": {
|
695 |
+
"_dom_classes": [],
|
696 |
"_model_module": "@jupyter-widgets/controls",
|
697 |
"_model_module_version": "1.5.0",
|
698 |
+
"_model_name": "FloatProgressModel",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
699 |
"_view_count": null,
|
700 |
+
"_view_module": "@jupyter-widgets/controls",
|
701 |
+
"_view_module_version": "1.5.0",
|
702 |
+
"_view_name": "ProgressView",
|
703 |
+
"bar_style": "success",
|
704 |
+
"description": "",
|
705 |
+
"description_tooltip": null,
|
706 |
+
"layout": "IPY_MODEL_5adcafc9d6f84ca9ae372ee9295cd944",
|
707 |
+
"max": 1,
|
708 |
+
"min": 0,
|
709 |
+
"orientation": "horizontal",
|
710 |
+
"style": "IPY_MODEL_ccd9de576ca9430d9a8064a3a8e1347b",
|
711 |
+
"value": 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
}
|
713 |
},
|
714 |
+
"2751b58cfcc84215aabfc45de27b77b3": {
|
715 |
"model_module": "@jupyter-widgets/controls",
|
|
|
716 |
"model_module_version": "1.5.0",
|
717 |
+
"model_name": "DescriptionStyleModel",
|
718 |
"state": {
|
719 |
"_model_module": "@jupyter-widgets/controls",
|
720 |
"_model_module_version": "1.5.0",
|
721 |
+
"_model_name": "DescriptionStyleModel",
|
722 |
"_view_count": null,
|
723 |
"_view_module": "@jupyter-widgets/base",
|
724 |
"_view_module_version": "1.2.0",
|
725 |
"_view_name": "StyleView",
|
|
|
726 |
"description_width": ""
|
727 |
}
|
728 |
},
|
729 |
+
"38895ca8e4f749838b071b724cc39b46": {
|
730 |
"model_module": "@jupyter-widgets/base",
|
|
|
731 |
"model_module_version": "1.2.0",
|
732 |
+
"model_name": "LayoutModel",
|
733 |
"state": {
|
734 |
"_model_module": "@jupyter-widgets/base",
|
735 |
"_model_module_version": "1.2.0",
|
|
|
778 |
"width": null
|
779 |
}
|
780 |
},
|
781 |
+
"4912fec232b44537a80c52b04291fe7b": {
|
782 |
"model_module": "@jupyter-widgets/controls",
|
|
|
783 |
"model_module_version": "1.5.0",
|
784 |
+
"model_name": "FloatProgressModel",
|
785 |
"state": {
|
786 |
+
"_dom_classes": [],
|
787 |
"_model_module": "@jupyter-widgets/controls",
|
788 |
"_model_module_version": "1.5.0",
|
789 |
+
"_model_name": "FloatProgressModel",
|
790 |
"_view_count": null,
|
791 |
+
"_view_module": "@jupyter-widgets/controls",
|
792 |
+
"_view_module_version": "1.5.0",
|
793 |
+
"_view_name": "ProgressView",
|
794 |
+
"bar_style": "success",
|
795 |
+
"description": "",
|
796 |
+
"description_tooltip": null,
|
797 |
+
"layout": "IPY_MODEL_38895ca8e4f749838b071b724cc39b46",
|
798 |
+
"max": 1,
|
799 |
+
"min": 0,
|
800 |
+
"orientation": "horizontal",
|
801 |
+
"style": "IPY_MODEL_55b8641523d84c15bea6b35f04c554fc",
|
802 |
+
"value": 1
|
803 |
}
|
804 |
},
|
805 |
+
"54c0e2e43d27482f9dcb67ce9d60c85c": {
|
806 |
"model_module": "@jupyter-widgets/controls",
|
|
|
807 |
"model_module_version": "1.5.0",
|
808 |
+
"model_name": "HBoxModel",
|
809 |
"state": {
|
810 |
"_dom_classes": [],
|
811 |
"_model_module": "@jupyter-widgets/controls",
|
|
|
817 |
"_view_name": "HBoxView",
|
818 |
"box_style": "",
|
819 |
"children": [
|
820 |
+
"IPY_MODEL_a1595618ab5f48e08a7c9a6a0879ad26",
|
821 |
+
"IPY_MODEL_4912fec232b44537a80c52b04291fe7b",
|
822 |
+
"IPY_MODEL_ca88cec6e0834e27990b8350b752c827"
|
823 |
],
|
824 |
+
"layout": "IPY_MODEL_5ba1c94eddd24e2aae5b25d9d6884dc0"
|
825 |
}
|
826 |
},
|
827 |
+
"55b8641523d84c15bea6b35f04c554fc": {
|
828 |
"model_module": "@jupyter-widgets/controls",
|
|
|
829 |
"model_module_version": "1.5.0",
|
830 |
+
"model_name": "ProgressStyleModel",
|
831 |
"state": {
|
|
|
832 |
"_model_module": "@jupyter-widgets/controls",
|
833 |
"_model_module_version": "1.5.0",
|
834 |
+
"_model_name": "ProgressStyleModel",
|
835 |
"_view_count": null,
|
836 |
+
"_view_module": "@jupyter-widgets/base",
|
837 |
+
"_view_module_version": "1.2.0",
|
838 |
+
"_view_name": "StyleView",
|
839 |
+
"bar_color": null,
|
840 |
+
"description_width": ""
|
|
|
|
|
|
|
|
|
841 |
}
|
842 |
},
|
843 |
+
"580648891bde443786cf1b06070f846f": {
|
844 |
"model_module": "@jupyter-widgets/controls",
|
|
|
845 |
"model_module_version": "1.5.0",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
846 |
"model_name": "HTMLModel",
|
|
|
847 |
"state": {
|
848 |
"_dom_classes": [],
|
849 |
"_model_module": "@jupyter-widgets/controls",
|
|
|
855 |
"_view_name": "HTMLView",
|
856 |
"description": "",
|
857 |
"description_tooltip": null,
|
858 |
+
"layout": "IPY_MODEL_a9cb9e343b93467895741fff5f0db25d",
|
859 |
"placeholder": "β",
|
860 |
+
"style": "IPY_MODEL_d9bf82bf03984146aadfa5441f89ea98",
|
861 |
+
"value": "Fetching 1 files: 100%"
|
862 |
}
|
863 |
},
|
864 |
+
"5adcafc9d6f84ca9ae372ee9295cd944": {
|
865 |
"model_module": "@jupyter-widgets/base",
|
|
|
866 |
"model_module_version": "1.2.0",
|
867 |
+
"model_name": "LayoutModel",
|
868 |
"state": {
|
869 |
"_model_module": "@jupyter-widgets/base",
|
870 |
"_model_module_version": "1.2.0",
|
|
|
913 |
"width": null
|
914 |
}
|
915 |
},
|
916 |
+
"5ba1c94eddd24e2aae5b25d9d6884dc0": {
|
917 |
"model_module": "@jupyter-widgets/base",
|
|
|
918 |
"model_module_version": "1.2.0",
|
919 |
+
"model_name": "LayoutModel",
|
920 |
"state": {
|
921 |
"_model_module": "@jupyter-widgets/base",
|
922 |
"_model_module_version": "1.2.0",
|
|
|
965 |
"width": null
|
966 |
}
|
967 |
},
|
968 |
+
"66bbfff8db6146b2a7b922b1b590f1f9": {
|
969 |
"model_module": "@jupyter-widgets/controls",
|
970 |
+
"model_module_version": "1.5.0",
|
971 |
"model_name": "DescriptionStyleModel",
|
972 |
+
"state": {
|
973 |
+
"_model_module": "@jupyter-widgets/controls",
|
974 |
+
"_model_module_version": "1.5.0",
|
975 |
+
"_model_name": "DescriptionStyleModel",
|
976 |
+
"_view_count": null,
|
977 |
+
"_view_module": "@jupyter-widgets/base",
|
978 |
+
"_view_module_version": "1.2.0",
|
979 |
+
"_view_name": "StyleView",
|
980 |
+
"description_width": ""
|
981 |
+
}
|
982 |
+
},
|
983 |
+
"75490fa060524ef3bd675bb41a0c5eb3": {
|
984 |
+
"model_module": "@jupyter-widgets/controls",
|
985 |
"model_module_version": "1.5.0",
|
986 |
+
"model_name": "DescriptionStyleModel",
|
987 |
"state": {
|
988 |
"_model_module": "@jupyter-widgets/controls",
|
989 |
"_model_module_version": "1.5.0",
|
|
|
995 |
"description_width": ""
|
996 |
}
|
997 |
},
|
998 |
+
"866da5a8e421477c8089dbfa1bdcc812": {
|
999 |
"model_module": "@jupyter-widgets/base",
|
1000 |
+
"model_module_version": "1.2.0",
|
1001 |
"model_name": "LayoutModel",
|
1002 |
+
"state": {
|
1003 |
+
"_model_module": "@jupyter-widgets/base",
|
1004 |
+
"_model_module_version": "1.2.0",
|
1005 |
+
"_model_name": "LayoutModel",
|
1006 |
+
"_view_count": null,
|
1007 |
+
"_view_module": "@jupyter-widgets/base",
|
1008 |
+
"_view_module_version": "1.2.0",
|
1009 |
+
"_view_name": "LayoutView",
|
1010 |
+
"align_content": null,
|
1011 |
+
"align_items": null,
|
1012 |
+
"align_self": null,
|
1013 |
+
"border": null,
|
1014 |
+
"bottom": null,
|
1015 |
+
"display": null,
|
1016 |
+
"flex": null,
|
1017 |
+
"flex_flow": null,
|
1018 |
+
"grid_area": null,
|
1019 |
+
"grid_auto_columns": null,
|
1020 |
+
"grid_auto_flow": null,
|
1021 |
+
"grid_auto_rows": null,
|
1022 |
+
"grid_column": null,
|
1023 |
+
"grid_gap": null,
|
1024 |
+
"grid_row": null,
|
1025 |
+
"grid_template_areas": null,
|
1026 |
+
"grid_template_columns": null,
|
1027 |
+
"grid_template_rows": null,
|
1028 |
+
"height": null,
|
1029 |
+
"justify_content": null,
|
1030 |
+
"justify_items": null,
|
1031 |
+
"left": null,
|
1032 |
+
"margin": null,
|
1033 |
+
"max_height": null,
|
1034 |
+
"max_width": null,
|
1035 |
+
"min_height": null,
|
1036 |
+
"min_width": null,
|
1037 |
+
"object_fit": null,
|
1038 |
+
"object_position": null,
|
1039 |
+
"order": null,
|
1040 |
+
"overflow": null,
|
1041 |
+
"overflow_x": null,
|
1042 |
+
"overflow_y": null,
|
1043 |
+
"padding": null,
|
1044 |
+
"right": null,
|
1045 |
+
"top": null,
|
1046 |
+
"visibility": null,
|
1047 |
+
"width": null
|
1048 |
+
}
|
1049 |
+
},
|
1050 |
+
"9d20bac626ef472f848d727d56afc98c": {
|
1051 |
+
"model_module": "@jupyter-widgets/base",
|
1052 |
"model_module_version": "1.2.0",
|
1053 |
+
"model_name": "LayoutModel",
|
1054 |
"state": {
|
1055 |
"_model_module": "@jupyter-widgets/base",
|
1056 |
"_model_module_version": "1.2.0",
|
|
|
1099 |
"width": null
|
1100 |
}
|
1101 |
},
|
1102 |
+
"a1595618ab5f48e08a7c9a6a0879ad26": {
|
1103 |
"model_module": "@jupyter-widgets/controls",
|
|
|
1104 |
"model_module_version": "1.5.0",
|
1105 |
+
"model_name": "HTMLModel",
|
1106 |
"state": {
|
1107 |
+
"_dom_classes": [],
|
1108 |
"_model_module": "@jupyter-widgets/controls",
|
1109 |
"_model_module_version": "1.5.0",
|
1110 |
+
"_model_name": "HTMLModel",
|
1111 |
"_view_count": null,
|
1112 |
+
"_view_module": "@jupyter-widgets/controls",
|
1113 |
+
"_view_module_version": "1.5.0",
|
1114 |
+
"_view_name": "HTMLView",
|
1115 |
+
"description": "",
|
1116 |
+
"description_tooltip": null,
|
1117 |
+
"layout": "IPY_MODEL_1708f929db494251b19de5d0322ff26d",
|
1118 |
+
"placeholder": "β",
|
1119 |
+
"style": "IPY_MODEL_2751b58cfcc84215aabfc45de27b77b3",
|
1120 |
+
"value": "Fetching 1 files: 100%"
|
1121 |
}
|
1122 |
},
|
1123 |
+
"a5e99e6026f24c408cca741c6fc2509c": {
|
1124 |
+
"model_module": "@jupyter-widgets/controls",
|
1125 |
+
"model_module_version": "1.5.0",
|
1126 |
+
"model_name": "HTMLModel",
|
1127 |
+
"state": {
|
1128 |
+
"_dom_classes": [],
|
1129 |
+
"_model_module": "@jupyter-widgets/controls",
|
1130 |
+
"_model_module_version": "1.5.0",
|
1131 |
+
"_model_name": "HTMLModel",
|
1132 |
+
"_view_count": null,
|
1133 |
+
"_view_module": "@jupyter-widgets/controls",
|
1134 |
+
"_view_module_version": "1.5.0",
|
1135 |
+
"_view_name": "HTMLView",
|
1136 |
+
"description": "",
|
1137 |
+
"description_tooltip": null,
|
1138 |
+
"layout": "IPY_MODEL_9d20bac626ef472f848d727d56afc98c",
|
1139 |
+
"placeholder": "β",
|
1140 |
+
"style": "IPY_MODEL_75490fa060524ef3bd675bb41a0c5eb3",
|
1141 |
+
"value": " 1/1 [00:00<00:00, 35.90it/s]"
|
1142 |
+
}
|
1143 |
+
},
|
1144 |
+
"a9cb9e343b93467895741fff5f0db25d": {
|
1145 |
"model_module": "@jupyter-widgets/base",
|
|
|
1146 |
"model_module_version": "1.2.0",
|
1147 |
+
"model_name": "LayoutModel",
|
1148 |
"state": {
|
1149 |
"_model_module": "@jupyter-widgets/base",
|
1150 |
"_model_module_version": "1.2.0",
|
|
|
1193 |
"width": null
|
1194 |
}
|
1195 |
},
|
1196 |
+
"ca88cec6e0834e27990b8350b752c827": {
|
1197 |
"model_module": "@jupyter-widgets/controls",
|
|
|
1198 |
"model_module_version": "1.5.0",
|
1199 |
+
"model_name": "HTMLModel",
|
1200 |
+
"state": {
|
1201 |
+
"_dom_classes": [],
|
1202 |
+
"_model_module": "@jupyter-widgets/controls",
|
1203 |
+
"_model_module_version": "1.5.0",
|
1204 |
+
"_model_name": "HTMLModel",
|
1205 |
+
"_view_count": null,
|
1206 |
+
"_view_module": "@jupyter-widgets/controls",
|
1207 |
+
"_view_module_version": "1.5.0",
|
1208 |
+
"_view_name": "HTMLView",
|
1209 |
+
"description": "",
|
1210 |
+
"description_tooltip": null,
|
1211 |
+
"layout": "IPY_MODEL_866da5a8e421477c8089dbfa1bdcc812",
|
1212 |
+
"placeholder": "β",
|
1213 |
+
"style": "IPY_MODEL_66bbfff8db6146b2a7b922b1b590f1f9",
|
1214 |
+
"value": " 1/1 [00:00<00:00, 36.62it/s]"
|
1215 |
+
}
|
1216 |
+
},
|
1217 |
+
"ccd9de576ca9430d9a8064a3a8e1347b": {
|
1218 |
+
"model_module": "@jupyter-widgets/controls",
|
1219 |
+
"model_module_version": "1.5.0",
|
1220 |
+
"model_name": "ProgressStyleModel",
|
1221 |
+
"state": {
|
1222 |
+
"_model_module": "@jupyter-widgets/controls",
|
1223 |
+
"_model_module_version": "1.5.0",
|
1224 |
+
"_model_name": "ProgressStyleModel",
|
1225 |
+
"_view_count": null,
|
1226 |
+
"_view_module": "@jupyter-widgets/base",
|
1227 |
+
"_view_module_version": "1.2.0",
|
1228 |
+
"_view_name": "StyleView",
|
1229 |
+
"bar_color": null,
|
1230 |
+
"description_width": ""
|
1231 |
+
}
|
1232 |
+
},
|
1233 |
+
"d9bf82bf03984146aadfa5441f89ea98": {
|
1234 |
+
"model_module": "@jupyter-widgets/controls",
|
1235 |
+
"model_module_version": "1.5.0",
|
1236 |
+
"model_name": "DescriptionStyleModel",
|
1237 |
"state": {
|
1238 |
"_model_module": "@jupyter-widgets/controls",
|
1239 |
"_model_module_version": "1.5.0",
|
|
|
1250 |
},
|
1251 |
"nbformat": 4,
|
1252 |
"nbformat_minor": 5
|
1253 |
+
}
|