import gradio as gr from langchain.llms import CTransformers from langchain import PromptTemplate, LLMChain config = {'max_new_tokens': 100, 'temperature': 0} llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', model_file="mistral-7b-instruct-v0.1.Q4_K_M.gguf", config=config) template = """[INST] You are a helpful, respectful and honest assistant. Answer exactly in few words from the context Answer the question below from context below : {context} {question} [/INST] """ prompt = PromptTemplate(template=template, input_variables=["question","context"]) llm_chain = LLMChain(prompt=prompt, llm=llm) def question_answer(context: str, question: str): print(context, question) response = llm_chain.run({"question":question, "context":context}) print(response) return response theme = gr.themes.Default( primary_hue="indigo", secondary_hue="pink", neutral_hue="slate", ) with gr.Blocks(theme=theme) as interface: context = gr.Textbox(lines=5, placeholder="On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.", label="Context") question = gr.Textbox(placeholder="What company is buyer and seller here", label="Question") answer = gr.Textbox(placeholder="Answer will be here", label="Answer") ask_button = gr.Button("Ask (this might take a minute since it's using CPU)") ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer) interface.launch(debug=True)