File size: 11,586 Bytes
336dbcf
 
 
 
d7a1a69
d4ee1f3
336dbcf
 
 
 
d7a1a69
c46f4d1
1f31600
336dbcf
d00ce10
52b4b13
336dbcf
 
 
 
02b6647
 
801b180
 
02b6647
d7a1a69
 
 
336dbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22406d6
 
 
 
 
 
4cc8081
336dbcf
 
 
 
02b6647
336dbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b6647
 
 
336dbcf
 
02b6647
 
 
 
801b180
02b6647
 
801b180
02b6647
 
336dbcf
3de5f1f
801b180
336dbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446475
336dbcf
 
 
aa74b4f
336dbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f31600
e3199ed
 
336dbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663c49d
f2d2079
336dbcf
 
 
 
 
 
 
 
 
f2d2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336dbcf
 
 
 
8d55c6b
 
336dbcf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import gradio as gr
import torch
from diffusers import FluxPipeline, StableDiffusion3Pipeline
from PIL import Image
from typing import Optional
import os

import random
import numpy as np
import spaces
import huggingface_hub
import copy

from FlowEdit_utils import FlowEditSD3, FlowEditFLUX
SD3STRING = 'stabilityai/stable-diffusion-3-medium-diffusers'
FLUXSTRING = 'black-forest-labs/FLUX.1-dev'
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
# model_type = 'SD3'

pipe_sd3 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, token=os.getenv('HF_ACCESS_TOK'))
pipe_flux = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, token=os.getenv('HF_ACCESS_TOK'))
# pipe_sd3.to(device)
# pipe_flux.to(device)

# scheduler = pipe.scheduler
# pipe = pipe.to(device)
loaded_model = 'None'


def on_model_change(model_type):
    if model_type == 'SD3':

        T_steps_value = 50

        src_guidance_scale_value = 3.5

        tar_guidance_scale_value = 13.5

        n_max_value = 33

    elif model_type == 'FLUX':

        T_steps_value = 28

        src_guidance_scale_value = 1.5

        tar_guidance_scale_value = 5.5

        n_max_value = 24

    else:
        raise NotImplementedError(f"Model type {model_type} not implemented")
    
    return T_steps_value, src_guidance_scale_value, tar_guidance_scale_value, n_max_value

def get_examples():
    case = [
        ["inputs/cat.png", "SD3", 50,  3.5, 13.5, 33, "A small, fluffy kitten sitting in a grassy field. The kitten is positioned in the center of the scene, surrounded by a field. The kitten appears to be looking at something in the field.", "A small puppy sitting in a grassy field. The puppy is positioned in the center of the scene, surrounded by a field. The puppy appears to be looking at something in the field.", 0, 1, 42, "example_outs/cat_puppy_sd3.png"],
        ["inputs/iguana.png", "SD3", 50,  3.5, 13.5, 31, "A large orange lizard sitting on a rock near the ocean. The lizard is positioned in the center of the scene, with the ocean waves visible in the background. The rock is located close to the water, providing a picturesque setting for the lizard''s resting spot.", "A large dragon sitting on a rock near the ocean. The dragon is positioned in the center of the scene, with the ocean waves visible in the background. The rock is located close to the water, providing a picturesque setting for the dragon''s resting spot.", 0, 1, 42, "example_outs/iguana_dragon.png"],
        ["inputs/cat.png", "FLUX", 28,  1.5, 5.5, 23, "A small, fluffy kitten sitting in a grassy field. The kitten is positioned in the center of the scene, surrounded by a field. The kitten appears to be looking at something in the field.", "A small puppy sitting in a grassy field. The puppy is positioned in the center of the scene, surrounded by a field. The puppy appears to be looking at something in the field.", 0, 1, 42, "example_outs/cat_puppy_flux.png"],
        ["inputs/gas_station.png", "FLUX", 28,  1.5, 5.5, 23, "A gas station with a white and red sign that reads \"CAFE\" There are several cars parked in front of the gas station, including a white car and a van.", "A gas station with a white and red sign that reads \"CVPR\" There are several cars parked in front of the gas station, including a white car and a van.", 0, 1, 42, "example_outs/gas_cafe_cvpr.png"],
        ["inputs/steak.png", "FLUX", 28,  1.5, 5.5, 23, "A steak accompanied by a side of leaf salad.", "A bread roll accompanied by a side of leaf salad.", 0, 1, 42, "example_outs/steak_bread.png"],
        ["inputs/kill_bill.png", "FLUX", 28,  2.5, 6.5, 22, "a blonde woman in a yellow jumpsuit holding a sword in front of her face", "a blonde woman in a yellow jumpsuit holding a sword in front of her face, anime style drawing", 14, 1, 42, "example_outs/kill_bill_anime.png"],

    ]
    return case


@spaces.GPU(duration=60)
def FlowEditRun(
    image_src: str,
    model_type: str,
    T_steps: int,
    src_guidance_scale: float,
    tar_guidance_scale: float,
    n_max: int,
    src_prompt: str,
    tar_prompt: str,
    n_min: int,
    n_avg: int,
    seed: int,

    ):

    if not len(src_prompt):
        raise gr.Error("source prompt cannot be empty")
    if not len(tar_prompt):
        raise gr.Error("target prompt cannot be empty")

    # global pipe_sd3
    # global scheduler
    # global loaded_model

    # reload model only if different from the loaded model
    # if loaded_model != model_type:

    if model_type == 'FLUX':
        # pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, token=os.getenv('HF_ACCESS_TOK'))
        pipe = pipe_flux.to(device) 
    elif model_type == 'SD3':
        # pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, token=os.getenv('HF_ACCESS_TOK'))
        pipe = pipe_sd3.to(device) 
    else:
        raise NotImplementedError(f"Model type {model_type} not implemented")

    scheduler = pipe.scheduler
        # pipe = pipe.to(device)




    # set seed
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # load image
    image = Image.open(image_src)
    # crop image to have both dimensions divisibe by 16 - avoids issues with resizing
    image = image.crop((0, 0, image.width - image.width % 16, image.height - image.height % 16))
    image_src = pipe.image_processor.preprocess(image)
    # image_tar = pipe.image_processor.postprocess(image_src)
    # return image_tar[0]

    # cast image to half precision
    image_src = image_src.to(device).half()

    with torch.autocast("cuda"), torch.inference_mode():
        x0_src_denorm = pipe.vae.encode(image_src).latent_dist.mode()
    x0_src = (x0_src_denorm - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
    # send to cuda
    x0_src = x0_src.to(device)

    negative_prompt =  "" # optionally add support for negative prompts (SD3)

    if model_type == 'SD3':
        x0_tar = FlowEditSD3(pipe,
                            scheduler,
                            x0_src,
                            src_prompt,
                            tar_prompt,
                            negative_prompt,
                            T_steps,
                            n_avg,
                            src_guidance_scale,
                            tar_guidance_scale,
                            n_min,
                            n_max,)
        
    elif model_type == 'FLUX':
        x0_tar = FlowEditFLUX(pipe,
                            scheduler,
                            x0_src,
                            src_prompt,
                            tar_prompt,
                            negative_prompt,
                            T_steps,
                            n_avg,
                            src_guidance_scale,
                            tar_guidance_scale,
                            n_min,
                            n_max,)
    else:
        raise NotImplementedError(f"Sampler type {model_type} not implemented")


    x0_tar_denorm = (x0_tar / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
    with torch.autocast("cuda"), torch.inference_mode():
        image_tar = pipe.vae.decode(x0_tar_denorm, return_dict=False)[0]
    image_tar = pipe.image_processor.postprocess(image_tar)


    return image_tar[0]


# title = "FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models"

intro = """
<h1 style="font-weight: 1000; text-align: center; margin: 0px;">FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models</h1>
<h3 style="margin-bottom: 10px; text-align: center;">
    <a href="https://arxiv.org/abs/2412.08629">[Paper]</a>&nbsp;|&nbsp;
    <a href="https://matankleiner.github.io/flowedit/">[Project Page]</a>&nbsp;|&nbsp;
    <a href="https://github.com/fallenshock/FlowEdit">[Code]</a>
</h3>
🚧 Early Version 🚧 Gradio demo for FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models. See our project page for more details.

<br>
<br>Edit your image using Flow models! upload an image, add a description of it, and specify the edits you want to make.
<h3>Notes:</h3>

<ol>
  <li>We use FLUX.1 dev and SD3 for the demo. The models are large and may take a while to load.</li>
  <li>We recommend 1024x1024 images for the best results. If the input images are too large, there may be out-of-memory errors.</li>
  <li>Default hyperparameters for each model used in the paper are provided as examples. Feel free to experiment with them as well.</li>
</ol>  

"""

# article = """
# πŸ“ **Citation**
# ```bibtex
# @article{aaa,
#   author    = {},
#   title     = {},
#   journal   = {},
#   year      = {2024},
#   url       = {}
# }
# ```
# """


with gr.Blocks() as demo:
    

    gr.HTML(intro)
    
    # with gr.Row():
    #     gr.LoginButton(value="Login to HF (For SD3 and FLUX access)", variant="primary")

    with gr.Row(equal_height=True):
        image_src = gr.Image(type="filepath", label="Source Image", value="inputs/cat.png",)
        image_tar = gr.Image(label="Output", type="pil", show_label=True, format="png",),

    with gr.Row():
        src_prompt = gr.Textbox(lines=2, label="Source Prompt", value="a cat sitting in the grass")

    with gr.Row():
        tar_prompt = gr.Textbox(lines=2, label="Target Prompt", value="a puppy sitting in the grass")

    with gr.Row():
        model_type = gr.Dropdown(["SD3", "FLUX"], label="Model Type", value="SD3")
        T_steps = gr.Number(value=50, label="Total Steps", minimum=1, maximum=50)
        n_max = gr.Number(value=33, label="n_max (control the strength of the edit)")

    with gr.Row():
        src_guidance_scale = gr.Slider(minimum=1.0, maximum=30.0, value=3.5, label="src_guidance_scale")
        tar_guidance_scale = gr.Slider(minimum=1.0, maximum=30.0, value=13.5, label="tar_guidance_scale")
    
    with gr.Row():
        submit_button = gr.Button("Run FlowEdit", variant="primary")


    with gr.Accordion(label="Advanced Settings", open=False):
        # additional inputs
        n_min = gr.Number(value=0, label="n_min (for improved style edits)")
        n_avg = gr.Number(value=1, label="n_avg (improve structure at the cost of runtime)", minimum=1)
        seed = gr.Number(value=42, label="seed")




    submit_button.click(
                        fn=FlowEditRun, 
                        inputs=[
                        image_src,
                        model_type,
                        T_steps,
                        src_guidance_scale,
                        tar_guidance_scale,
                        n_max,
                        src_prompt,
                        tar_prompt,
                        n_min,
                        n_avg,
                        seed,
                        ],
                        outputs=[
                        image_tar[0],
                        ],
                        )
    

    gr.Examples(
        label="Examples",
        examples=get_examples(),
        inputs=[image_src, model_type, T_steps, src_guidance_scale, tar_guidance_scale, n_max, src_prompt, tar_prompt, n_min, n_avg, seed, image_tar[0]],
        outputs=[image_tar[0]],
    )

    model_type.input(fn=on_model_change, inputs=[model_type], outputs=[T_steps, src_guidance_scale, tar_guidance_scale, n_max])


    # gr.HTML(article)
demo.queue()
demo.launch( )