import gradio as gr import torch from diffusers import FluxPipeline, StableDiffusion3Pipeline from PIL import Image from typing import Optional import os import random import numpy as np import spaces import huggingface_hub from FlowEdit_utils import FlowEditSD3, FlowEditFLUX SD3STRING = 'stabilityai/stable-diffusion-3-medium-diffusers' FLUXSTRING = 'black-forest-labs/FLUX.1-dev' device = "cuda" if torch.cuda.is_available() else "cpu" # device = "cpu" # model_type = 'SD3' # pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16) # scheduler = pipe.scheduler # pipe = pipe.to(device) loaded_model = 'None' def on_model_change(model_type): if model_type == 'SD3': T_steps_value = 50 src_guidance_scale_value = 3.5 tar_guidance_scale_value = 13.5 n_max_value = 33 elif model_type == 'FLUX': T_steps_value = 28 src_guidance_scale_value = 1.5 tar_guidance_scale_value = 5.5 n_max_value = 24 else: raise NotImplementedError(f"Model type {model_type} not implemented") return T_steps_value, src_guidance_scale_value, tar_guidance_scale_value, n_max_value def get_examples(): case = [ ["inputs/cat.png", "SD3", 50, 3.5, 13.5, 33, "a cat sitting in the grass", "a puppy sitting in the grass", 0, 1, 42], ["inputs/gas_station.png", "SD3", 50, 3.5, 13.5, 33, "cars are parked in front of a gas station with a sign that says \"CAFE\"", "cars are parked in front of a gas station with a sign that says \"CVPR\"", 0, 1, 42], ["inputs/iguana.png", "SD3", 50, 3.5, 13.5, 31, "A large orange lizard sitting on a rock near the ocean. The lizard is positioned in the center of the scene, with the ocean waves visible in the background. The rock is located close to the water, providing a picturesque setting for the lizard''s resting spot.", "A large dragon sitting on a rock near the ocean. The dragon is positioned in the center of the scene, with the ocean waves visible in the background. The rock is located close to the water, providing a picturesque setting for the dragon''s resting spot.", 0, 1, 42], ["inputs/cat.png", "FLUX", 28, 1.5, 5.5, 24, "a cat sitting in the grass", "a puppy sitting in the grass", 0, 1, 42], ["inputs/gas_station.png", "FLUX", 28, 1.5, 5.5, 24, "cars are parked in front of a gas station with a sign that says \"CAFE\"", "cars are parked in front of a gas station with a sign that says \"CVPR\"", 0, 1, 23], ["inputs/steak.png", "FLUX", 28, 1.5, 5.5, 24, "A steak accompanied by a side of leaf salad.", "A bread roll accompanied by a side of leaf salad.", 0, 1, 42], ] return case @spaces.GPU() def FlowEditRun( image_src: str, model_type: str, T_steps: int, src_guidance_scale: float, tar_guidance_scale: float, n_max: int, src_prompt: str, tar_prompt: str, n_min: int, n_avg: int, seed: int, # oauth_token: Optional[gr.OAuthToken] = None ): # if oauth_token is None: # raise gr.Error("You must be logged in to use Stable Diffusion 3.0 and FLUX.1 models.") # if model_type == 'SD3': # try: # print(f'token: {oauth_token.token}') # huggingface_hub.get_hf_file_metadata(huggingface_hub.hf_hub_url(SD3STRING, 'transformer/diffusion_pytorch_model.safetensors'), # token=oauth_token.token) # print('Has Access') # # except huggingface_hub.utils._errors.GatedRepoError: # except huggingface_hub.errors.GatedRepoError: # raise gr.Error("You need to accept the license agreement to use Stable Diffusion 3. " # "Visit the " # "model page to get access.") # elif model_type == 'FLUX': # try: # huggingface_hub.get_hf_file_metadata(huggingface_hub.hf_hub_url(FLUXSTRING, 'flux1-dev.safetensors'), # token=oauth_token.token) # print('Has Access') # # except huggingface_hub.utils._errors.GatedRepoError: # except huggingface_hub.errors.GatedRepoError: # raise gr.Error("You need to accept the license agreement to use FLUX.1. " # "Visit the " # "model page to get access.") # else: # raise NotImplementedError(f"Model type {model_type} not implemented") if not len(src_prompt): raise gr.Error("source prompt cannot be empty") if not len(tar_prompt): raise gr.Error("target prompt cannot be empty") global pipe global scheduler global loaded_model # reload model only if different from the loaded model if loaded_model != model_type: if model_type == 'FLUX': # pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, token=os.getenv('HF_ACCESS_TOK')) loaded_model = 'FLUX' elif model_type == 'SD3': pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, token=os.getenv('HF_ACCESS_TOK')) loaded_model = 'SD3' else: raise NotImplementedError(f"Model type {model_type} not implemented") scheduler = pipe.scheduler pipe = pipe.to(device) # set seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # load image image = Image.open(image_src) # crop image to have both dimensions divisibe by 16 - avoids issues with resizing image = image.crop((0, 0, image.width - image.width % 16, image.height - image.height % 16)) image_src = pipe.image_processor.preprocess(image) # image_tar = pipe.image_processor.postprocess(image_src) # return image_tar[0] # cast image to half precision image_src = image_src.to(device).half() with torch.autocast("cuda"), torch.inference_mode(): x0_src_denorm = pipe.vae.encode(image_src).latent_dist.mode() x0_src = (x0_src_denorm - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor # send to cuda x0_src = x0_src.to(device) negative_prompt = "" # optionally add support for negative prompts (SD3) if model_type == 'SD3': x0_tar = FlowEditSD3(pipe, scheduler, x0_src, src_prompt, tar_prompt, negative_prompt, T_steps, n_avg, src_guidance_scale, tar_guidance_scale, n_min, n_max,) elif model_type == 'FLUX': x0_tar = FlowEditFLUX(pipe, scheduler, x0_src, src_prompt, tar_prompt, negative_prompt, T_steps, n_avg, src_guidance_scale, tar_guidance_scale, n_min, n_max,) else: raise NotImplementedError(f"Sampler type {model_type} not implemented") x0_tar_denorm = (x0_tar / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor with torch.autocast("cuda"), torch.inference_mode(): image_tar = pipe.vae.decode(x0_tar_denorm, return_dict=False)[0] image_tar = pipe.image_processor.postprocess(image_tar) return image_tar[0] # title = "FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models" intro = """