File size: 6,635 Bytes
aa8012e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import math
import torch
import torch.nn as nn
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttentionCA(nn.Module):
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
super().__init__()
self.scale = dim_head ** -0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, seq_len, _ = latents.shape
q = self.to_q(latents)
k, v = self.to_kv(x).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
return self.to_out(out)
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
super().__init__()
self.scale = dim_head ** -0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, seq_len, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
return self.to_out(out)
class IDFormer(nn.Module):
"""
- perceiver resampler like arch (compared with previous MLP-like arch)
- we concat id embedding (generated by arcface) and query tokens as latents
- latents will attend each other and interact with vit features through cross-attention
- vit features are multi-scaled and inserted into IDFormer in order, currently, each scale corresponds to two
IDFormer layers
"""
def __init__(
self,
dim=1024,
depth=10,
dim_head=64,
heads=16,
num_id_token=5,
num_queries=32,
output_dim=2048,
ff_mult=4,
):
super().__init__()
self.num_id_token = num_id_token
self.dim = dim
self.num_queries = num_queries
assert depth % 5 == 0
self.depth = depth // 5
scale = dim ** -0.5
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
for i in range(5):
setattr(
self,
f'mapping_{i}',
nn.Sequential(
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, dim),
),
)
self.id_embedding_mapping = nn.Sequential(
nn.Linear(1280, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, dim * num_id_token),
)
def forward(self, x, y):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.id_embedding_mapping(x)
x = x.reshape(-1, self.num_id_token, self.dim)
latents = torch.cat((latents, x), dim=1)
for i in range(5):
vit_feature = getattr(self, f'mapping_{i}')(y[i])
ctx_feature = torch.cat((x, vit_feature), dim=1)
for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]:
latents = attn(ctx_feature, latents) + latents
latents = ff(latents) + latents
latents = latents[:, :self.num_queries]
latents = latents @ self.proj_out
return latents
|