|
import gc |
|
|
|
import cv2 |
|
import insightface |
|
import torch |
|
import torch.nn as nn |
|
from basicsr.utils import img2tensor, tensor2img |
|
from facexlib.parsing import init_parsing_model |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
from insightface.app import FaceAnalysis |
|
from safetensors.torch import load_file |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import normalize, resize |
|
|
|
from eva_clip import create_model_and_transforms |
|
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
from pulid.encoders_flux import IDFormer, PerceiverAttentionCA |
|
|
|
|
|
class PuLIDPipeline(nn.Module): |
|
def __init__(self, dit, device, weight_dtype=torch.bfloat16, *args, **kwargs): |
|
super().__init__() |
|
self.device = device |
|
self.weight_dtype = weight_dtype |
|
double_interval = 2 |
|
single_interval = 4 |
|
|
|
|
|
self.pulid_encoder = IDFormer().to(self.device, self.weight_dtype) |
|
|
|
num_ca = 19 // double_interval + 38 // single_interval |
|
if 19 % double_interval != 0: |
|
num_ca += 1 |
|
if 38 % single_interval != 0: |
|
num_ca += 1 |
|
self.pulid_ca = nn.ModuleList([ |
|
PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca) |
|
]) |
|
|
|
dit.pulid_ca = self.pulid_ca |
|
dit.pulid_double_interval = double_interval |
|
dit.pulid_single_interval = single_interval |
|
|
|
|
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale_factor=1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
device=self.device, |
|
) |
|
self.face_helper.face_parse = None |
|
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) |
|
|
|
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) |
|
model = model.visual |
|
self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype) |
|
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) |
|
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) |
|
if not isinstance(eva_transform_mean, (list, tuple)): |
|
eva_transform_mean = (eva_transform_mean,) * 3 |
|
if not isinstance(eva_transform_std, (list, tuple)): |
|
eva_transform_std = (eva_transform_std,) * 3 |
|
self.eva_transform_mean = eva_transform_mean |
|
self.eva_transform_std = eva_transform_std |
|
|
|
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') |
|
self.app = FaceAnalysis( |
|
name='antelopev2', root='.', providers=['CPUExecutionProvider'] |
|
) |
|
self.app.prepare(ctx_id=0, det_size=(640, 640)) |
|
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx') |
|
self.handler_ante.prepare(ctx_id=0) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
self.debug_img_list = [] |
|
|
|
def load_pretrain(self, pretrain_path=None): |
|
hf_hub_download('guozinan/PuLID', 'pulid_flux_v0.9.0.safetensors', local_dir='models') |
|
ckpt_path = 'models/pulid_flux_v0.9.0.safetensors' |
|
if pretrain_path is not None: |
|
ckpt_path = pretrain_path |
|
state_dict = load_file(ckpt_path) |
|
state_dict_dict = {} |
|
for k, v in state_dict.items(): |
|
module = k.split('.')[0] |
|
state_dict_dict.setdefault(module, {}) |
|
new_k = k[len(module) + 1:] |
|
state_dict_dict[module][new_k] = v |
|
|
|
for module in state_dict_dict: |
|
print(f'loading from {module}') |
|
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) |
|
|
|
del state_dict |
|
del state_dict_dict |
|
|
|
def to_gray(self, img): |
|
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] |
|
x = x.repeat(1, 3, 1, 1) |
|
return x |
|
|
|
@torch.no_grad() |
|
def get_id_embedding(self, image, cal_uncond=False): |
|
""" |
|
Args: |
|
image: numpy rgb image, range [0, 255] |
|
""" |
|
self.face_helper.clean_all() |
|
self.debug_img_list = [] |
|
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
|
|
face_info = self.app.get(image_bgr) |
|
if len(face_info) > 0: |
|
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[ |
|
-1 |
|
] |
|
id_ante_embedding = face_info['embedding'] |
|
self.debug_img_list.append( |
|
image[ |
|
int(face_info['bbox'][1]) : int(face_info['bbox'][3]), |
|
int(face_info['bbox'][0]) : int(face_info['bbox'][2]), |
|
] |
|
) |
|
else: |
|
id_ante_embedding = None |
|
|
|
|
|
self.face_helper.read_image(image_bgr) |
|
self.face_helper.get_face_landmarks_5(only_center_face=True) |
|
self.face_helper.align_warp_face() |
|
if len(self.face_helper.cropped_faces) == 0: |
|
raise RuntimeError('facexlib align face fail') |
|
align_face = self.face_helper.cropped_faces[0] |
|
|
|
if id_ante_embedding is None: |
|
print('fail to detect face using insightface, extract embedding on align face') |
|
id_ante_embedding = self.handler_ante.get_feat(align_face) |
|
|
|
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype) |
|
if id_ante_embedding.ndim == 1: |
|
id_ante_embedding = id_ante_embedding.unsqueeze(0) |
|
|
|
|
|
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 |
|
input = input.to(self.device) |
|
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] |
|
parsing_out = parsing_out.argmax(dim=1, keepdim=True) |
|
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] |
|
bg = sum(parsing_out == i for i in bg_label).bool() |
|
white_image = torch.ones_like(input) |
|
|
|
face_features_image = torch.where(bg, white_image, self.to_gray(input)) |
|
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) |
|
|
|
|
|
face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) |
|
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) |
|
id_cond_vit, id_vit_hidden = self.clip_vision_model( |
|
face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False |
|
) |
|
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) |
|
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) |
|
|
|
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) |
|
|
|
id_embedding = self.pulid_encoder(id_cond, id_vit_hidden) |
|
|
|
if not cal_uncond: |
|
return id_embedding, None |
|
|
|
id_uncond = torch.zeros_like(id_cond) |
|
id_vit_hidden_uncond = [] |
|
for layer_idx in range(0, len(id_vit_hidden)): |
|
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) |
|
uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond) |
|
|
|
return id_embedding, uncond_id_embedding |
|
|