flx-pulid / eva_clip /model.py
邬彦泽
1
aa8012e
""" CLIP Model
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
try:
from .hf_model import HFTextEncoder
except:
HFTextEncoder = None
from .modified_resnet import ModifiedResNet
# from .timm_model import TimmModel
from .eva_vit_model import EVAVisionTransformer
from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
try:
from apex.normalization import FusedLayerNorm
except:
FusedLayerNorm = LayerNorm
print("Please 'pip install apex'")
try:
import xformers.ops as xops
except ImportError:
xops = None
print("Please 'pip install xformers'")
@dataclass
class CLIPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
head_width: int = 64
mlp_ratio: float = 4.0
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
ls_init_value: Optional[float] = None # layer scale initial value
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
drop_path_rate: Optional[float] = None # drop path rate
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
timm_proj_bias: bool = False # enable bias final projection
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
qkv_bias: bool = True
fusedLN: bool = False
xattn: bool = False
postnorm: bool = False
rope: bool = False
pt_hw_seq_len: int = 16 # 224/14
intp_freq: bool = False
naiveswiglu: bool = False
subln: bool = False
@dataclass
class CLIPTextCfg:
context_length: int = 77
vocab_size: int = 49408
width: int = 512
heads: int = 8
layers: int = 12
ls_init_value: Optional[float] = None # layer scale initial value
hf_model_name: str = None
hf_tokenizer_name: str = None
hf_model_pretrained: bool = True
proj: str = 'mlp'
pooler_type: str = 'mean_pooler'
masked_language_modeling: bool = False
fusedLN: bool = False
xattn: bool = False
attn_mask: bool = True
def get_cast_dtype(precision: str):
cast_dtype = None
if precision == 'bf16':
cast_dtype = torch.bfloat16
elif precision == 'fp16':
cast_dtype = torch.float16
return cast_dtype
def _build_vision_tower(
embed_dim: int,
vision_cfg: CLIPVisionCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None
):
if isinstance(vision_cfg, dict):
vision_cfg = CLIPVisionCfg(**vision_cfg)
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
# memory efficient in recent PyTorch releases (>= 1.10).
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
act_layer = QuickGELU if quick_gelu else nn.GELU
if vision_cfg.eva_model_name:
vision_heads = vision_cfg.width // vision_cfg.head_width
norm_layer = LayerNorm
visual = EVAVisionTransformer(
img_size=vision_cfg.image_size,
patch_size=vision_cfg.patch_size,
num_classes=embed_dim,
use_mean_pooling=vision_cfg.global_average_pool, #False
init_values=vision_cfg.ls_init_value,
patch_dropout=vision_cfg.patch_dropout,
embed_dim=vision_cfg.width,
depth=vision_cfg.layers,
num_heads=vision_heads,
mlp_ratio=vision_cfg.mlp_ratio,
qkv_bias=vision_cfg.qkv_bias,
drop_path_rate=vision_cfg.drop_path_rate,
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
xattn=vision_cfg.xattn,
rope=vision_cfg.rope,
postnorm=vision_cfg.postnorm,
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
intp_freq= vision_cfg.intp_freq,
naiveswiglu= vision_cfg.naiveswiglu,
subln= vision_cfg.subln
)
elif vision_cfg.timm_model_name:
# visual = TimmModel(
# vision_cfg.timm_model_name,
# pretrained=vision_cfg.timm_model_pretrained,
# pool=vision_cfg.timm_pool,
# proj=vision_cfg.timm_proj,
# proj_bias=vision_cfg.timm_proj_bias,
# embed_dim=embed_dim,
# image_size=vision_cfg.image_size
# )
# act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
raise ValueError
elif isinstance(vision_cfg.layers, (tuple, list)):
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
visual = ModifiedResNet(
layers=vision_cfg.layers,
output_dim=embed_dim,
heads=vision_heads,
image_size=vision_cfg.image_size,
width=vision_cfg.width
)
else:
vision_heads = vision_cfg.width // vision_cfg.head_width
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
visual = VisionTransformer(
image_size=vision_cfg.image_size,
patch_size=vision_cfg.patch_size,
width=vision_cfg.width,
layers=vision_cfg.layers,
heads=vision_heads,
mlp_ratio=vision_cfg.mlp_ratio,
ls_init_value=vision_cfg.ls_init_value,
patch_dropout=vision_cfg.patch_dropout,
global_average_pool=vision_cfg.global_average_pool,
output_dim=embed_dim,
act_layer=act_layer,
norm_layer=norm_layer,
)
return visual
def _build_text_tower(
embed_dim: int,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
):
if isinstance(text_cfg, dict):
text_cfg = CLIPTextCfg(**text_cfg)
if text_cfg.hf_model_name:
text = HFTextEncoder(
text_cfg.hf_model_name,
output_dim=embed_dim,
tokenizer_name=text_cfg.hf_tokenizer_name,
proj=text_cfg.proj,
pooler_type=text_cfg.pooler_type,
masked_language_modeling=text_cfg.masked_language_modeling
)
else:
act_layer = QuickGELU if quick_gelu else nn.GELU
norm_layer = LayerNorm
text = TextTransformer(
context_length=text_cfg.context_length,
vocab_size=text_cfg.vocab_size,
width=text_cfg.width,
heads=text_cfg.heads,
layers=text_cfg.layers,
ls_init_value=text_cfg.ls_init_value,
output_dim=embed_dim,
act_layer=act_layer,
norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
xattn=text_cfg.xattn,
attn_mask=text_cfg.attn_mask,
)
return text
class CLIP(nn.Module):
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
self.transformer = text.transformer
self.vocab_size = text.vocab_size
self.token_embedding = text.token_embedding
self.positional_embedding = text.positional_embedding
self.ln_final = text.ln_final
self.text_projection = text.text_projection
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.visual.set_grad_checkpointing(enable)
self.transformer.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
return {'logit_scale'}
def encode_image(self, image, normalize: bool = False):
features = self.visual(image)
return F.normalize(features, dim=-1) if normalize else features
def encode_text(self, text, normalize: bool = False):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_mask=self.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return F.normalize(x, dim=-1) if normalize else x
def forward(self, image, text):
image_features = self.encode_image(image, normalize=True)
text_features = self.encode_text(text, normalize=True)
return image_features, text_features, self.logit_scale.exp()
class CustomCLIP(nn.Module):
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
itm_task: bool = False,
):
super().__init__()
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
self.text.lock(unlocked_layers, freeze_layer_norm)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.visual.set_grad_checkpointing(enable)
self.text.set_grad_checkpointing(enable)
@torch.jit.ignore
def no_weight_decay(self):
return {'logit_scale'}
def encode_image(self, image, normalize: bool = False):
features = self.visual(image)
return F.normalize(features, dim=-1) if normalize else features
def encode_text(self, text, normalize: bool = False):
features = self.text(text)
return F.normalize(features, dim=-1) if normalize else features
def forward(self, image, text):
image_features = self.encode_image(image, normalize=True)
text_features = self.encode_text(text, normalize=True)
return image_features, text_features, self.logit_scale.exp()
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
def _convert_weights(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.to(dtype)
if l.bias is not None:
l.bias.data = l.bias.data.to(dtype)
if isinstance(l, (nn.MultiheadAttention, Attention)):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr, None)
if tensor is not None:
tensor.data = tensor.data.to(dtype)
if isinstance(l, nn.Parameter):
l.data = l.data.to(dtype)
for name in ["text_projection", "proj"]:
if hasattr(l, name) and isinstance(l, nn.Parameter):
attr = getattr(l, name, None)
if attr is not None:
attr.data = attr.data.to(dtype)
model.apply(_convert_weights)
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
# used to maintain checkpoint compatibility
def convert_to_custom_text_state_dict(state_dict: dict):
if 'text_projection' in state_dict:
# old format state_dict, move text tower -> .text
new_state_dict = {}
for k, v in state_dict.items():
if any(k.startswith(p) for p in (
'text_projection',
'positional_embedding',
'token_embedding',
'transformer',
'ln_final',
'logit_scale'
)):
k = 'text.' + k
new_state_dict[k] = v
return new_state_dict
return state_dict
def build_model_from_openai_state_dict(
state_dict: dict,
quick_gelu=True,
cast_dtype=torch.float16,
):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_size = vision_patch_size * grid_size
else:
counts: list = [
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_size = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
vision_cfg = CLIPVisionCfg(
layers=vision_layers,
width=vision_width,
patch_size=vision_patch_size,
image_size=image_size,
)
text_cfg = CLIPTextCfg(
context_length=context_length,
vocab_size=vocab_size,
width=transformer_width,
heads=transformer_heads,
layers=transformer_layers
)
model = CLIP(
embed_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
cast_dtype=cast_dtype,
)
for key in ["input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
model.load_state_dict(state_dict)
return model.eval()
def trace_model(model, batch_size=256, device=torch.device('cpu')):
model.eval()
image_size = model.visual.image_size
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
model = torch.jit.trace_module(
model,
inputs=dict(
forward=(example_images, example_text),
encode_text=(example_text,),
encode_image=(example_images,)
))
model.visual.image_size = image_size
return model