|
import torch |
|
from einops import rearrange |
|
from torch import Tensor |
|
|
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: |
|
if pe is not None: |
|
q, k = apply_rope(q, k, pe) |
|
|
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) |
|
x = rearrange(x, "B H L D -> B L (H D)") |
|
|
|
return x |
|
|
|
|
|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor: |
|
assert dim % 2 == 0 |
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim |
|
omega = 1.0 / (theta**scale) |
|
out = torch.einsum("...n,d->...nd", pos, omega) |
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) |
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) |
|
return out.float() |
|
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: |
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) |
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) |
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] |
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] |
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) |
|
|