|
from torch import Tensor, nn |
|
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer |
|
|
|
|
|
class HFEmbedder(nn.Module): |
|
def __init__(self, version: str, max_length: int, **hf_kwargs): |
|
super().__init__() |
|
self.is_clip = version.startswith("openai") |
|
self.max_length = max_length |
|
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" |
|
|
|
if self.is_clip: |
|
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) |
|
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) |
|
else: |
|
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) |
|
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) |
|
|
|
self.hf_module = self.hf_module.eval().requires_grad_(False) |
|
|
|
def forward(self, text: list[str]) -> Tensor: |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
|
|
outputs = self.hf_module( |
|
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
) |
|
return outputs[self.output_key] |
|
|